Search Results

Now showing 1 - 3 of 3
  • Item
    Strong Wet and Dry Adhesion by Cupped Microstructures
    (Washington, DC : American Chemical Society, 2019) Wang, Y.; Kang, V.; Arzt, E.; Federle, W.; Hensel, R.
    Recent advances in bio-inspired microfibrillar adhesives have resulted in technologies that allow reliable attachment to a variety of surfaces. Because capillary and van der Waals forces are considerably weakened underwater, fibrillar adhesives are however far less effective in wet environments. Although various strategies have been proposed to achieve strong reversible underwater adhesion, strong adhesives that work both in air and underwater without additional surface treatments have yet to be developed. In this study, we report a novel design - cupped microstructures (CM) - that generates strong controllable adhesion in air and underwater. We measured the adhesive performance of cupped polyurethane microstructures with three different cup angles (15, 30, and 45°) and the same cup diameter of 100 μm in dry and wet conditions in comparison to standard mushroom-shaped microstructures (MSMs) of the same dimensions. In air, 15°CM performed comparably to the flat MSM of the same size with an adhesion strength (force per real contact area) of up to 1.3 MPa, but underwater, 15°CM achieved 20 times stronger adhesion than MSM (∼1 MPa versus ∼0.05 MPa). Furthermore, the cupped microstructures exhibit self-sealing properties, whereby stronger pulls lead to longer stable attachment and much higher adhesion through the formation of a better seal. © 2019 American Chemical Society.
  • Item
    Switchable Underwater Adhesion by Deformable Cupped Microstructures
    (Weinheim : Wiley-VCH, 2020) Wang, Yue; Kang, Victor; Federle, Walter; Arzt, Eduard; Hensel, René
    Switchable underwater adhesion can be useful for numerous applications, but is extremely challenging due to the presence of water at the contact interface. Here, deformable cupped microstructures (diameter typically 100 µm, rim thickness 5 µm) are reported that can switch between high (≈1 MPa) and low (<0.2 MPa) adhesion strength by adjusting the retraction velocity from 100 to 0.1 µm s–1. The velocity at which the switch occurs is determined by specific design parameters of the cupped microstructure, such as the cup width and angle. The results are compared with theoretical estimates of water penetration into the contact zone and expansion of the cup during retraction. This work paves the way for controlling wet adhesion on demand and may inspire further applications in smart adhesives.
  • Item
    Bioinspired Underwater Adhesion to Rough Substrates by Cavity Collapse of Cupped Microstructures
    (Weinheim : Wiley-VCH, 2021) Wang, Yue; Hensel, René
    Underwater or wet adhesion is highly desirable for numerous applications but is counteracted by the liquids in the contact which weaken intermolecular attraction. The problem is exacerbated in conjunction with surface roughness when liquids partially remain in grooves or dimples of the substrate. In the present study, a cupped microstructure with a cavity inspired by suction organs of aquatic animals is proposed. The microstructures (cup radius of 100 µm) are made from polyurethane using two-photon lithography followed by replica molding. Adhesion to rough substrates is emulated experimentally by a micropatterned model substrate with varying channel widths. Pull-off stresses are found to be about 200 kPa, i.e., twice atmospheric pressure. Evaluation of force–displacement curves together with in situ observations reveal the adhesion mechanism, which involves adaptation to surface roughness and an elastic force induced by the collapse of the cavity that holds sealed contact with the substrate during retraction. This new microarchitecture may pave the way for next generation microstructures applicable to real, rough surfaces under wet conditions.