Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Structural and chemical investigations of adapted Siemens feed rods for an optimized float zone process

2013, Richter, S., Werner, M., Schley, M., Schaaff, F., Riemann, H., Rost, H.-J., Zobel, F., Kunert, R., Dold, P., Hagendorf, C.

The optimization of the float zone process for industrial application is a promising way to crystallize high purity silicon for high efficiency solar cells with reduced process costs. We investigated two differently produced Siemens rods which should be used as feed material for the float zone process. The aim is to identify and to improve material properties of the feed rods which have a high impact to the float zone process. We show here microstructural and chemical analysis comparing feed rods manufactured under standard conditions and under float zone adapted conditions. To resolve the growth behavior of the grains SEM/EBSD mappings are performed at different positions. TEM analyses are used to investigate the interface region between the mono- and the multicrystalline silicon within the Siemens feed rod. Additionally, drilled cores are cut out from the feed rods containing the region of the slim rod. Afterwards, the drilled cores are crystallized with the float zone process. Finally, carbon and oxygen measurements with FT-IR spectrometry on different positions of the crystallized drilled cores of the Siemens feed rods show the influence of the slim rod material to the float zone process.

Loading...
Thumbnail Image
Item

Influence of slim rod material properties to the Siemens feed rod and the float zone process

2014, Richter, S., Werner, M., Schley, M., Schaaff, F., Riemann, H., Rost, H.-J., Zobel, F., Kunert, R., Dold, P., Hagendorf, C.

The identification and understanding of material properties influencing the float zone process is important to crystallize high purity silicon for high efficiency solar cells. Also the knowledge of minimal requirements to crystallize monocrystalline silicon with the float zone process is of interest from an economic point of view. In the present study, feed rods for the float zone process composed of a central slim rod and the deposited silicon from the Siemens process are investigated. Previous studies have shown that the slim rod has a significant impact on the purity and suitability for further crystallization processes. In particular, contaminations like substitutional carbon and the presence of precipitates as well as the formation of oxide layers play an important role and are investigated in detail. For this purpose different slim rod materials were used in deposition and float zone crystallization experiments. Samples were prepared by cross sectioning and core drilling of Siemens rods, which were recrystallized with the float zone process. Recrystallized drilled cores are analyzed with FT-IR spectrometry concerning the carbon and oxygen content. To estimate the grain growth behavior on the slim rod surface in dependence of the used slim rod material, EBSD mappings inside a SEM are performed on squared and circular slim rods. TEM analysis was used to investigate the presence of an oxide layer at the interface between slim rod and deposited polycrystalline silicon. Additionally the influence of a nitrogen-containing gas atmosphere during the slim rod pulling is investigated by IR microscopy and ToF-SIMS regarding Si3N4 precipitation.