Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Long-term trends in the ionospheric F2 region with different solar activity indices

2013, Mielich, J., Bremer, J.

A new comprehensive data collection by Damboldt and Suessmann (2012a) with monthly foF2 and M(3000)F2 median values is an excellent basis for the derivation of long-term trends in the ionospheric F2 region. Ionospheric trends have been derived only for stations with data series of at least 22 years (124 stations with foF2 data and 113 stations with M(3000)F2 data) using a twofold regression analysis depending on solar and geomagnetic activity. Three main results have been derived: Firstly, it could be shown that the solar 10.7 cm radio flux F10.7 is a better index for the description of the solar activity than the relative solar sunspot number R as well as the solar EUV proxy E10.7. Secondly, the global mean foF2 and

Loading...
Thumbnail Image
Item

The Geminid meteor shower during the ECOMA sounding rocket campaign: Specular and head echo radar observations

2013, Stober, G., Schult, C., Baumann, C., Latteck, R., Rapp, M.

The ECOMA (Existence of Charge state Of meteoric smoke particles in the Middle Atmosphere) sounding rocket campaign was conducted during the Geminid meteor shower in December 2010 in order to explore whether there is a change of the properties of meteoric smoke particles due to the stream. In parallel to the rocket flights, three radars monitored the Geminid activity located at the launch site in Northern Norway and in Northern Germany to gain information about the meteor flux into the atmosphere. The results presented here are based on specular meteor radar observations measuring the radiant position, the velocity and the meteor flux into the atmosphere during the Geminids. Further, the MAARSY (Middle Atmosphere Alomar Radar System) radar was operated to conduct meteor head echo experiments. The interferometric capabilities of MAARSY permit measuring the meteor trajectories within the radar beam and to determine the source radiant and geocentric meteor velocity, as well as to compute the meteor orbit.

Loading...
Thumbnail Image
Item

Impacts of acoustic and gravity waves on the ionosphere

2022, Zawdie, Kate, Belehaki, Anna, Burleigh, Meghan, Chou, Min-Yang, Dhadly, Manbharat S., Greer, Katelynn, Halford, Alexa J., Hickey, Dustin, Inchin, Pavel, Kaeppler, Stephen R., Klenzing, Jeff, Narayanan, Viswanathan Lakshmi, Sassi, Fabrizio, Sivakandan, Mani, Smith, Jonathon M., Zabotin, Nikolay, Zettergren, Matthew D., Zhang, Shun-Rong

The impact of regional-scale neutral atmospheric waves has been demonstrated to have profound effects on the ionosphere, but the circumstances under which they generate ionospheric disturbances and seed plasma instabilities are not well understood. Neutral atmospheric waves vary from infrasonic waves of <20 Hz to gravity waves with periods on the order of 10 min, for simplicity, hereafter they are combined under the common term Acoustic and Gravity Waves (AGWs). There are other longer period waves like planetary waves from the lower and middle atmosphere, whose effects are important globally, but they are not considered here. The most ubiquitous and frequently observed impact of AGWs on the ionosphere are Traveling Ionospheric Disturbances (TIDs), but AGWs also affect the global ionosphere/thermosphere circulation and can trigger ionospheric instabilities (e.g., Perkins, Equatorial Spread F). The purpose of this white paper is to outline additional studies and observations that are required in the coming decade to improve our understanding of the impact of AGWs on the ionosphere.

Loading...
Thumbnail Image
Item

September 2019 Antarctic Sudden Stratospheric Warming: Quasi-6-Day Wave Burst and Ionospheric Effects

2020, Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T., Kervalishvili, G., Laštovička, J., Kozubek, M., Ward, W., Themens, D.R., Kristoffersen, S., Alken, P.

An exceptionally strong stationary planetary wave with Zonal Wavenumber 1 led to a sudden stratospheric warming (SSW) in the Southern Hemisphere in September 2019. Ionospheric data from European Space Agency's Swarm satellite constellation mission show prominent 6-day variations in the dayside low-latitude region at this time, which can be attributed to forcing from the middle atmosphere by the Rossby normal mode “quasi-6-day wave” (Q6DW). Geopotential height measurements by the Microwave Limb Sounder aboard National Aeronautics and Space Administration's Aura satellite reveal a burst of global Q6DW activity in the mesosphere and lower thermosphere during the SSW, which is one of the strongest in the record. The Q6DW is apparently generated in the polar stratosphere at 30–40 km, where the atmosphere is unstable due to strong vertical wind shear connected with planetary wave breaking. These results suggest that an Antarctic SSW can lead to ionospheric variability through wave forcing from the middle atmosphere. ©2020. The Authors.

Loading...
Thumbnail Image
Item

Ground-based noontime D-region electron density climatology over northern Norway

2023, Renkwitz, Toralf, Sivakandan, Mani, Jaen, Juliana, Singer, Werner

The bottom part of the Earth's ionosphere is the so-called D region, which is typically less dense than the upper regions. Despite the comparably lower electron density, the ionization state of the D region has a significant influence on signal absorption for propagating lower to medium radio frequencies. We present local noon climatologies of electron densities in the upper middle atmosphere (50-90km) at high latitudes as observed by an active radar experiment. The radar measurements cover 9 years (2014-2022) from the solar maximum of cycle 24 to the beginning of cycle 25. Reliable electron densities are derived by employing signal processing, applying interferometry methods, and applying the Faraday-International Reference Ionosphere (FIRI) model. For all years a consistent spring-fall asymmetry of the electron density pattern with a gradual increase during summer as well as a sharp decrease at the beginning of October was found. These findings are consistent with very low frequency (VLF) studies showing equivalent signatures for nearby propagation paths. It is suggested that the meridional circulation associated with downwelling in winter could cause enhanced electron densities through NO transport. However, this mechanism can not explain the reduction in electron density in early October.

Loading...
Thumbnail Image
Item

History of the Juliusruh ionospheric observatory on Rügen

2016, Weiß, J.

The history of the Juliusruh ionospheric observatory on Rügen is closely connected to the history of ground-based ionospheric sounding. After a short introduction to the ionospheric research and the sounding technique, the founding of the Juliusruh station in 1954 and its development until today are described. The different methods of ground-based sounding – as far as they apply to Juliusruh – are briefly discussed. The condition of life and work in a small team on the island of Rügen, remote from the respective parent institute, is also the subject of this article, whose author headed Juliusruh Station from 1965 to 2004.

Loading...
Thumbnail Image
Item

The future of auroral E-region plasma turbulence research

2022, Huyghebaert, Devin, Billett, Daniel, Chartier, Alex, Chau, Jorge L., Hussey, Glenn C., Hysell, David L., Ivarsen, Magnus F., Mesquita, Rafael L. A., Rojas, Enrique, Vierinen, Juha, Young, Matthew

The heating caused by ionospheric E-region plasma turbulence has documented global implications for the energy transfer from space into the terrestrial atmosphere. Traveling atmospheric disturbances, neutral wind motion, energy deposition rates, and ionospheric conductance have all been shown to be potentially affected by turbulent plasma heating. Therefore it is proposed to enhance and expand existing ionospheric radar capabilities and fund research into E-region plasma turbulence so that it is possible to more accurately quantify the solar-terrestrial energy budget and study phenomena related to E-region plasma turbulence. The proposed research funding includes the development of models to accurately predict and model the E-region plasma turbulence using particle-in-cell analysis, fluid-based analysis, and hybrid combinations of the two. This review provides an expanded and more detailed description of the past, present, and future of auroral E-region plasma turbulence research compared to the summary report submitted to the National Academy of Sciences Decadal Survey for Solar and Space Physics (Heliophysics) 2024–2033 (Huyghebaert et al., 2022a).

Loading...
Thumbnail Image
Item

Multistatic Specular Meteor Radar Network in Peru: System Description and Initial Results

2021, Chau, J.L., Urco, J.M., Vierinen, J., Harding, B.J., Clahsen, M., Pfeffer, N., Kuyeng, K.M., Milla, M.A., Erickson, P.J.

The mesosphere and lower thermosphere (MLT) region is dominated globally by dynamics at various scales: planetary waves, tides, gravity waves, and stratified turbulence. The latter two can coexist and be significant at horizontal scales less than 500 km, scales that are difficult to measure. This study presents a recently deployed multistatic specular meteor radar system, SIMONe Peru, which can be used to observe these scales. The radars are positioned at and around the Jicamarca Radio Observatory, which is located at the magnetic equator. Besides presenting preliminary results of typically reported large-scale features, like the dominant diurnal tide at low latitudes, we show results on selected days of spatially and temporally resolved winds obtained with two methods based on: (a) estimation of mean wind and their gradients (gradient method), and (b) an inverse theory with Tikhonov regularization (regularized wind field inversion method). The gradient method allows improved MLT vertical velocities and, for the first time, low-latitude wind field parameters such as horizontal divergence and relative vorticity. The regularized wind field inversion method allows the estimation of spatial structure within the observed area and has the potential to outperform the gradient method, in particular when more detections are available or when fine adaptive tuning of the regularization factor is done. SIMONe Peru adds important information at low latitudes to currently scarce MLT continuous observing capabilities. Results contribute to studies of the MLT dynamics at different scales inherently connected to lower atmospheric forcing and E-region dynamo related ionospheric variability.

Loading...
Thumbnail Image
Item

Novel specular meteor radar systems using coherent MIMO techniques to study the mesosphere and lower thermosphere

2019, Chau, J.L., Urco, J.M., Vierinen, J.P., Volz, R.A., Clahsen, M., Pfeffer, N., Trautner, J.

Typical specular meteor radars (SMRs) use one transmitting antenna and at least a five-antenna interferometric configuration on reception to study the mesosphere and lower thermosphere (MLT) region. The interferometric configuration allows the measurement of the angle-of-arrival (AOA) of the detected meteor echoes, which in turn is needed to derive atmospheric parameters (e.g., mean winds, momentum fluxes, temperatures, and neutral densities). Recently, we have shown that coherent MIMO configurations in atmospheric radars, i.e., multiple input (transmitters) and multiple output (receivers), with proper diversity in transmission can be used to enhance interferometric atmospheric and ionospheric observations. In this study we present novel SMR systems using multiple transmitters in interferometric configuration, each of them employing orthogonal pseudorandom coded transmitted sequences. After proper decoding, the angle of departure (AOD) of the detected meteor echoes with respect to the transmitter site are obtained at each receiving antenna. We present successful bistatic implementations of (1) five transmitters and one receiver using coded continuous wave (CW) (MISO-CW), and (2) five transmitters and five receivers using coded CW (MIMO-CW). The latter system allows simultaneous independent observations of the specular meteor trails with respect to the transmitter (AOD) and with respect to the receiver (AOA). The quality of the obtained results is evaluated in terms of the resulting mean winds, the number of detections and the daily diffusion trail vs. altitude behavior. We show that the proposed configurations are good alternatives to explore the MLT region. When combined with multi-static approaches, they can increase the number of meteor detections, thereby improving the quality of atmospheric estimates and allowing the measurement of new atmospheric parameters (e.g., horizontal divergence, vorticity), The use of multiple collocated transmitters for interferometric AOD determination makes building a multi-static radar network easier logistically, as only one receiver per receiving site antenna is sufficient. © 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Loading...
Thumbnail Image
Item

Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer

2018-5-18, Wüst, Sabine, Offenwanger, Thomas, Schmidt, Carsten, Bittner, Michael, Jacobi, Christoph, Stober, Gunter, Yee, Jeng-Hwa, Mlynczak, Martin G., Russell III, James M.

For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector. OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09∘ N, 11.28∘ E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30∘ N, 13.02∘ E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar. In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.