Search Results

Now showing 1 - 8 of 8
  • Item
    Self-Assembly of Polymer-Modified FePt Magnetic Nanoparticles and Block Copolymers
    (Basel : MDPI, 2023) Hartmann, Frank; Bitsch, Martin; Niebuur, Bart-Jan; Koch, Marcus; Kraus, Tobias; Dietz, Christian; Stark, Robert W.; Everett, Christopher R.; Müller-Buschbaum, Peter; Janka, Oliver; Gallei, Markus
    The fabrication of nanocomposites containing magnetic nanoparticles is gaining interest as a model for application in small electronic devices. The self-assembly of block copolymers (BCPs) makes these materials ideal for use as a soft matrix to support the structural ordering of the nanoparticles. In this work, a high-molecular-weight polystyrene-b-poly(methyl methacrylate) block copolymer (PS-b-PMMA) was synthesized through anionic polymerization. The influence of the addition of different ratios of PMMA-coated FePt nanoparticles (NPs) on the self-assembled morphology was investigated using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The self-assembly of the NPs inside the PMMA phase at low particle concentrations was analyzed statistically, and the negative effect of higher particle ratios on the lamellar BCP morphology became visible. The placement of the NPs inside the PMMA phase was also compared to theoretical descriptions. The magnetic addressability of the FePt nanoparticles inside the nanocomposite films was finally analyzed using bimodal magnetic force microscopy and proved the magnetic nature of the nanoparticles inside the microphase-separated BCP films.
  • Item
    Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites
    (Hoboken, NJ [u.a.] : Wiley, 2014) Guo, Jiaxi; Liu, Yanjun; Prada-Silvy, Ricardo; Tan, Yongqiang; Azad, Samina; Krause, Beate; Pötschke, Petra; Grady, Brian P.
    Two multi-walled carbon nanotubes (MWCNTs) having relatively high aspect ratios of 313 and 474 with approximately the same diameter were melt mixed with polycarbonate (PC) in a twin-screw conical micro compounder. The effects of aspect ratio on the electrical, mechanical, and thermal properties of the PC/MWCNT composites were investigated. Electrical conductivities and storage moduli of the filled samples are found to be independent of the starting aspect ratio for these high aspect ratio tubes; although the conductivities and storage moduli are still significantly higher than values of composites made with nanotubes having more commercially common aspect ratios of ∼100. Transmission electron microscopy results suggest that melt-mixing reduces these longer nanotubes to the same length, but still approximately two times longer than the length of commercially common aspect ratio tubes after melt-mixing. Molecular weight measurements show that during melt-mixing the longer nanotubes significantly degrade the molecular weight of the polymer as compared to very similar nanotubes with aspect ratio ∼100. Because of the molecular weight reduction glass transition temperatures predictably show a large decrease with increasing nanotube concentration. © 2013 Wiley Periodicals, Inc.
  • Item
    Electrical and melt rheological characterization of PC and co-continuous PC/SAN blends filled with CNTs: Relationship between melt-mixing parameters, filler dispersion, and filler aspect ratio
    (Hoboken, NJ [u.a.] : Wiley, 2018) Liebscher, Marco; Domurath, Jan; Krause, Beate; Saphiannikova, Marina; Heinrich, Gert; Pötschke, Petra
    Electrical and melt rheological properties of melt-mixed polycarbonate (PC) and co-continuous PC/poly(styrene–acrylonitrile) (SAN) blends with carbon nanotubes (CNTs) are investigated. Using two sets of mixing parameters, different states of filler dispersion are obtained. With increasing CNT dispersion, an increase in electrical resistivity near the percolation threshold of PC–CNT composites and (PC + CNT)/SAN blends is observed. This suggests that the higher mixing energies required for better dispersion also result in a more severe reduction of the CNT aspect ratio; this effect was proven by CNT length measurements. Melt rheological studies show higher reinforcing effects for composites with worse dispersion. The Eilers equation, describing the melt viscosity as function of filler content, was used to fit the data and to obtain information about an apparent aspect ratio change, which was in accordance with measured CNT length reduction. Such fitting could be also transferred to the blends and serves for a qualitatively based discussion. © 2017 Wiley Periodicals
  • Item
    Influence of talc with different particle sizes in melt-mixed LLDPE/MWCNT composites
    (Hoboken, NJ [u.a.] : Wiley, 2013) Müller, Michael Thomas; Dreyße, Janine; Häußler, Liane; Krause, Beate; Pötschke, Petra
    Linear low-density polyethylene (LLDPE) was melt-mixed with multiwalled carbon nanotubes (MWCNTs) and varying amounts of three different kinds of talc (phyllo silicate), each with a different particle size distribution, to examine the effect of these filler combinations with regards to the electrical percolation behavior. The state of the filler dispersion was assessed using transmission light microscopy and electron microscopy. The use of talc as a second filler during the melt mixing of LLDPE/MWCNT composites resulted in an improvement in the dispersion of the MWCNTs and a decrease of the electrical percolation threshold. Talc with lower particle sizes showed a more pronounced effect than talc with larger particle sizes. However, the improvement in dispersion was not reflected in the mechanical properties. Modulus and stress values increase with both, MWCNT and talc addition, but not in a synergistic manner. The crystallization behavior of the composites was studied by differential scanning calorimetry to determine its potential influence on the electrical percolation threshold. It was found that the crystallinity of the matrix increased slightly with the addition of talc but no further increments were observed with the incorporation of the MWCNTs. © 2013 Wiley Periodicals, Inc.
  • Item
    Crystallization behavior of poly(lactic acid)/titanium dioxide nanocomposites
    (Bangkok : King Mongkut’s University of Technology, 2015) Nomai, Jiraporn; Suksut, Buncha; Schlarb, Alois K
    In this study, a poly(lactic acid) (PLA) with various titanium dioxide (TiO2) nanoparticles loading were prepared by a manual laboratory mixing method. The effect of TiO2 nanoparticles on the non-isothermal and the isothermal crystallization behavior of PLA was investigated by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The presence of TiO2 nanoparticles decreased the spherulite growth rate of PLA, whereas it initiated faster crystallization through the heterogeneous nucleation process as observed by optical microscopy. The results of DSC analyzes confirmed that the TiO2 nanoparticles act as an efficient nucleating agent for PLA crystallization. The cold crystallization temperature and crystallization half-time of PLA decreased, while the degree of crystallinity of PLA increased in relation to increases of TiO2 nanoparticles.
  • Item
    Hybrid materials - past, present and future
    (Berlin : de Gruyter, 2014) Kickelbick, Guido
    Hybrid materials represent one of the most growing new material classes at the edge of technological innovations. Unique possibilities to create novel material properties by synergetic combination of inorganic and organic components on the molecular scale makes this materials class interesting for application-oriented research of chemists, physicists, and materials scientists. The modular approach for combination of properties by the selection of the best suited components opens new options for the generation of materials that are able to solve many technological problems. This review will show in selected examples how science and technological driven approaches can help to design better materials for future applications.
  • Item
    Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog
    (Washington D.C. : American Chemical Society, 2017) Xue, Longjian; Sanz, Belén; Luo, Aoyi; Turner, Kevin T.; Wang, Xin; Tan, Di; Zhang, Rui; Du, Hang; Steinhart, Martin; mijangos, Carmen; Guttmann, Markus; Kappl, Michael; del Campo, Aránzazu
    Biological materials achieve directional reinforcement with oriented assemblies of anisotropic building blocks. One such example is the nanocomposite structure of keratinized epithelium on the toe pad of tree frogs, in which hexagonal arrays of (soft) epithelial cells are crossed by densely packed and oriented (hard) keratin nanofibrils. Here, a method is established to fabricate arrays of tree-frog-inspired composite micropatterns composed of polydimethylsiloxane (PDMS) micropillars embedded with polystyrene (PS) nanopillars. Adhesive and frictional studies of these synthetic materials reveal a benefit of the hierarchical and anisotropic design for both adhesion and friction, in particular, at high matrix−fiber interfacial strengths. The presence of PS nanopillars alters the stress distribution at the contact interface of micropillars and therefore enhances the adhesion and friction of the composite micropattern. The results suggest a design principle for bioinspired structural adhesives, especially for wet environments.
  • Item
    Viscoelastic and self-healing behavior of silica filled ionically modified poly(isobutylene-co-isoprene) rubber
    (London : RSC Publishing, 2018) Sallat, Aladdin; Das, Amit; Schaber, Jana; Scheler, Ulrich; Bhagavatheswaran, Eshwaran S.; Stöckelhuber, Klaus W.; Heinrich, Gert; Voit, Brigitte; Böhme, Frank
    Rubber composites were prepared by mixing bromobutyl rubber (BIIR) with silica particles in the presence of 1-butylimidazole. In addition to pristine (precipitated) silica, silanized particles with aliphatic or imidazolium functional groups, respectively, were used as filler. The silanization was carried out either separately or in situ during compounding. The silanized particles were characterized by TGA, 1H-29Si cross polarization (CP)/MAS NMR, and Zeta potential measurements. During compounding, the bromine groups of BIIR were converted with 1-butylimidazole to ionic imidazolium groups which formed a dynamic network by ionic association. Based on DMA temperature and strain sweep measurements as well as cyclic tensile tests and stress-strain measurements it could be concluded that interactions between the ionic groups and interactions with the functional groups of the silica particles strongly influence the mechanical and viscoelastic behavior of the composites. A particularly pronounced reinforcing effect was observed for the composite with pristine silica, which was attributed to acid-base interactions between the silanol and imidazolium groups. In composites with alkyl or imidazolium functionalized silica particles, the interactions between the filler and the rubber matrix form dynamic networks with pronounced self-healing behavior and excellent tensile strength values of up to 19 MPa. This new approach in utilizing filler-matrix interactions in the formation of dynamic networks opens up new avenues in designing new kinds of particle-reinforced self-healing elastomeric materials with high technological relevance.