Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Experimental Observation of Dirac Nodal Links in Centrosymmetric Semimetal TiB2

2018, Liu, Z., Lou, R., Guo, P., Wang, Q., Sun, S., Li, C., Thirupathaiah, S., Fedorov, A., Shen, D., Liu, K., Lei, H., Wang, S.

The topological nodal-line semimetal state, serving as a fertile ground for various topological quantum phases, where a topological insulator, Dirac semimetal, or Weyl semimetal can be realized when the certain protecting symmetry is broken, has only been experimentally studied in very few materials. In contrast to discrete nodes, nodal lines with rich topological configurations can lead to more unusual transport phenomena. Utilizing angle-resolved photoemission spectroscopy and first-principles calculations, here, we provide compelling evidence of nodal-line fermions in centrosymmetric semimetal TiB2 with a negligible spin-orbit coupling effect. With the band crossings just below the Fermi energy, two groups of Dirac nodal rings are clearly observed without any interference from other bands, one surrounding the Brillouin zone (BZ) corner in the horizontal mirror plane σh and the other surrounding the BZ center in the vertical mirror plane σv. The linear dispersions forming Dirac nodal rings are as wide as 2 eV. We further observe that the two groups of nodal rings link together along the Γ-K direction, composing a nodal-link configuration. The simple electronic structure with Dirac nodal links mainly constituting the Fermi surfaces suggests TiB2 as a remarkable platform for studying and applying the novel physical properties related to nodal-line fermions.

Loading...
Thumbnail Image
Item

Synthetic gravitational horizons in low-dimensional quantum matter

2021, Morice, C., Moghaddam, A., Chernyavsky, D., van Wezel, J., van den Brink, J.

We propose a class of lattice models realizable in a wide range of setups whose low-energy dynamics exactlyreduces to Dirac fields subjected to (1+1)-dimensional [(1+1)D] gravitational backgrounds, including (anti-)deSitter space-time. Wave packets propagating on the lattice exhibit an eternal slowdown for power-law position-dependent hopping integralst(x)∝xγwhenγ 1, signaling the formation of black hole event horizons. Forγ<1 instead the wave packets behave radically different and bounce off the horizon. We show that the eternalslowdown relates to a zero-energy spectral singularity of the lattice model and that the semiclassical wave packetstrajectories coincide with the geodesics on (1+1)D dilaton gravity, paving the way for new and experimentallyfeasible routes to mimic black hole horizons and realize (1+1)D space-times as they appear in certain gravitytheories.

Loading...
Thumbnail Image
Item

Valence effect on the thermopower of Eu systems

2020, Stockert, U., Seiro, S., Seiro, S., Caroca-Canales, N., Hassinger, E., Hassinger, E., Geibel, C.

We investigated the thermoelectric transport properties of EuNi2P2 and EuIr2Si2 to evaluate the relevance of Kondo interaction and valence fluctuations in these materials. While the thermal conductivities behave conventionally, the thermopower curves exhibit large values with pronounced maxima as typically observed in Ce- and Yb-based heavy-fermion materials. However, neither the positions of these maxima nor the absolute thermopower values at low temperature are in line with the heavy-fermion scenario and the moderately enhanced effective charge carrier masses. Instead, we may relate the thermopower in our materials to the temperature-dependent Eu valence by taking into account changes in the chemical potential. Our analysis confirms that valence fluctuations play an important role in EuNi2P2 and EuIr2Si2.

Loading...
Thumbnail Image
Item

Field tunable three-dimensional magnetic nanotextures in cobalt-nickel nanowires

2021, Andersen, I., Wolf, D., Rodriguez, L., Lubk, A., Oliveros, D., Bran, C., Niermann, T., Rößler, U., Vazquez, M., Gatel, C., Snoeck, E.

Cylindrical magnetic nanowires with large transversal magnetocrystalline anisotropy have been shown to sustain nontrivial magnetic configurations resulting from the interplay of spatial confinement, exchange, and anisotropies. Exploiting these peculiar three-dimensional (3D) spin configurations and their solitonic inhomogeneities is expected to improve magnetization switching in future spintronics, such as power-saving magnetic memory and logic applications. Here we employ holographic vector-field electron tomography to reconstruct the remanent magnetic states in CoNi nanowires with 10 nm resolution in 3D, with a particular focus on domain walls between remanent states and ubiquitous real-structure effects stemming from irregular morphology and anisotropy variations. By tuning the applied magnetic field direction, both longitudinal and transverse multivortex states of different chiralities and peculiar 3D features such as shifted vortex cores are stabilized. The chiral domain wall between the longitudinal vortices of opposite chiralities exhibits a complex 3D shape characterized by a push out of the central vortex line and a gain in exchange and anisotropy energy. A similar complex 3D texture, including bent vortex lines, forms at the domain boundary between transverse-vortex states and longitudinal configurations. Micromagnetic simulations allow an understanding of the origin of the observed complex magnetic states.

Loading...
Thumbnail Image
Item

From Colossal to Zero: Controlling the Anomalous Hall Effect in Magnetic Heusler Compounds via Berry Curvature Design

2018, Manna, K., Muechler, L., Kao, T.-H., Stinshoff, R., Zhang, Y., Gooth, J., Kumar, N., Kreiner, G., Koepernik, K., Car, R., Kübler, J., Fecher, G.H., Shekhar, C., Sun, Y., Felser, C.

Since the discovery of the anomalous Hall effect (AHE), the anomalous Hall conductivity (AHC) has been thought to be zero when there is no net magnetization. However, the recently found relation between the intrinsic AHE and the Berry curvature predicts other possibilities, such as a large AHC in noncolinear antiferromagnets with no net magnetization but net Berry curvature. Vice versa, the AHE in principle could be tuned to zero, irrespective of a finite magnetization. Here, we experimentally investigate this possibility and demonstrate that the symmetry elements of Heusler magnets can be changed such that the Berry curvature and all the associated properties are switched while leaving the magnetization unaffected. This enables us to tune the AHC from 0 Ω-1 cm-1 up to 1600 Ω-1 cm-1 with an exceptionally high anomalous Hall angle up to 12%, while keeping the magnetization the same. Our study shows that the AHC can be controlled by selectively changing the Berry curvature distribution, independent of the magnetization.

Loading...
Thumbnail Image
Item

Thickness dependence of the anomalous Nernst effect and the Mott relation of Weyl semimetal Co2MnGa thin films

2020, Park, G.-H., Reichlova, H., Schlitz, R., Lammel, M., Markou, A., Swekis, P., Ritzinger, P., Kriegner, D., Noky, J., Gayles, J., Sun, Y., Felser, C., Nielsch, K., Goennenwein, S.T.B., Thomas, A.

We report a robust anomalous Nernst effect in Co2MnGa thin films in the thickness regime between 20 and 50 nm. The anomalous Nernst coefficient varied in the range of -2.0 to -3.0 μV/K at 300 K. We demonstrate that the anomalous Hall and Nernst coefficients exhibit similar behavior and fulfill the Mott relation. We simultaneously measure all four transport coefficients of the longitudinal resistivity, transversal resistivity, Seebeck coefficient, and anomalous Nernst coefficient. We connect the values of the measured and calculated Nernst conductivity by using the remaining three magnetothermal transport coefficients, where the Mott relation is still valid. The intrinsic Berry curvature dominates the transport due to the relation between the longitudinal and transversal transport. Therefore, we conclude that the Mott relationship is applicable to describe the magnetothermoelectric transport in Weyl semimetal Co2MnGa as a function of film thickness.

Loading...
Thumbnail Image
Item

Spin-glass state and reversed magnetic anisotropy induced by Cr doping in the Kitaev magnet α-RuCl3

2019, Bastien, G., Roslova, M., Haghighi, M.H., Mehlawat, K., Hunger, J., Isaeva, A., Doert, T., Vojta, M., Büchner, B., Wolter, A.U.B.

Magnetic properties of the substitution series Ru1-xCrxCl3 were investigated to determine the evolution from the anisotropic Kitaev magnet α-RuCl3 with Jeff=1/2 magnetic Ru3+ ions to the isotropic Heisenberg magnet CrCl3 with S=3/2 magnetic Cr3+ ions. Magnetization measurements on single crystals revealed a reversal of the magnetic anisotropy under doping, which we argue to arise from the competition between anisotropic Kitaev and off-diagonal interactions on the Ru-Ru links and approximately isotropic Cr-Ru and isotropic Cr-Cr interactions. In addition, combined magnetization, ac susceptibility, and specific-heat measurements clearly show the destabilization of the long-range magnetic order of α-RuCl3 in favor of a spin-glass state of Ru1-xCrxCl3 for a low doping of x≤0.1. The corresponding freezing temperature as a function of Cr content shows a broad maximum around x ≤ 0.45.

Loading...
Thumbnail Image
Item

Visualization of localized perturbations on a (001) surface of the ferromagnetic semimetal EuB6

2020, Rößler, S., Jiao, L., Seiro, S., Rosa, P.F.S., Fisk, Z., Rößler, U.K., Wirth, S.

We performed scanning tunneling microscopy (STM) and spectroscopy on a (001) surface of the ferromagnetic semimetal EuB6. Large-amplitude oscillations emanating from the elastic scattering of electrons by the surface impurities are observed in topography and in differential conductance maps. Fourier transform of the conductance maps embracing these regions indicate a holelike dispersion centered around the Γ point of the two-dimensional Brillouin zone. Using density functional theory slab calculations, we identify a spin-split surface state, which stems from the dangling pz orbitals of the apical boron atom. Hybridization with bulk electronic states leads to a resonance enhancement in certain regions around the Γ point, contributing to the remarkably strong real-space response around static point defects, which are observed in STM measurements.

Loading...
Thumbnail Image
Item

Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α-RuCl3

2018, Bastien, G., Garbarino, G., Yadav, R., Martinez-Casado, F.J., Beltrán, Rodríguez, R., Stahl, Q., Kusch, M., Limandri, S.P., Ray, R., Lampen-Kelley, P., Mandrus, D.G., Nagler, S.E., Roslova, M., Isaeva, A., Doert, T., Hozoi, L., Wolter, A.U.B., Büchner, B., Geck, J., Van Den Brink, J.

Magnetization and high-resolution x-ray diffraction measurements of the Kitaev-Heisenberg material α-RuCl3 reveal a pressure-induced crystallographic and magnetic phase transition at a hydrostatic pressure of p∼0.2 GPa. This structural transition into a triclinic phase is characterized by a very strong dimerization of the Ru-Ru bonds, accompanied by a collapse of the magnetic susceptibility. Ab initio quantum-chemistry calculations disclose a pressure-induced enhancement of the direct 4d-4d bonding on particular Ru-Ru links, causing a sharp increase of the antiferromagnetic exchange interactions. These combined experimental and computational data show that the Kitaev spin-liquid phase in α-RuCl3 strongly competes with the crystallization of spin singlets into a valence bond solid.

Loading...
Thumbnail Image
Item

Topological Electronic Structure and Intrinsic Magnetization in MnBi4Te7: A Bi2Te3 Derivative with a Periodic Mn Sublattice

2019, Vidal, R.C., Zeugner, A., Facio, J.I., Ray, R., Haghighi, M.H., Wolter, A.U.B., Corredor, Bohorquez, L.T., Caglieris, F., Moser, S., Figgemeier, T., Peixoto, T.R.F., Vasili, H.B., Valvidares, M., Jung, S., Cacho, C., Alfonsov, A., Mehlawat, K., Kataev, V., Hess, C., Richter, M., Büchner, B., Van Den Brink, J., Ruck, M., Reinert, F., Bentmann, H., Isaeva, A.

Combinations of nontrivial band topology and long-range magnetic order hold promise for realizations of novel spintronic phenomena, such as the quantum anomalous Hall effect and the topological magnetoelectric effect. Following theoretical advances, material candidates are emerging. Yet, so far a compound that combines a band-inverted electronic structure with an intrinsic net magnetization remains unrealized. MnBi2Te4 has been established as the first antiferromagnetic topological insulator and constitutes the progenitor of a modular (Bi2Te3)n(MnBi2Te4) series. Here, for n=1, we confirm a nonstoichiometric composition proximate to MnBi4Te7. We establish an antiferromagnetic state below 13 K followed by a state with a net magnetization and ferromagnetic-like hysteresis below 5 K. Angle-resolved photoemission experiments and density-functional calculations reveal a topologically nontrivial surface state on the MnBi4Te7(0001) surface, analogous to the nonmagnetic parent compound Bi2Te3. Our results establish MnBi4Te7 as the first band-inverted compound with intrinsic net magnetization providing a versatile platform for the realization of magnetic topological states of matter.