Search Results

Now showing 1 - 10 of 19
  • Item
    Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination
    (Cambridge : RSC, 2018) Kaiser, Selina K.; Lin, Ronghe; Mitchell, Sharon; Fako, Edvin; Krumeich, Frank; Hauert, Roland; Safonova, Olga V.; Kondratenko, Vita A.; Kondratenko, Evgenii V.; Collins, Sean M.; Midgley, Paul A.; López, Núria; Pérez-Ramírez, Javier
    Carbon-supported gold catalysts have the potential to replace the toxic mercuric chloride-based system applied industrially for acetylene hydrochlorination, a key technology for the manufacture of polyvinyl chloride. However, the design of an optimal catalyst is essentially hindered by the difficulties in assessing the nature of the active site. Herein, we present a platform of carbon supported gold nanostructures at a fixed metal loading, ranging from single atoms of tunable oxidation state and coordination to metallic nanoparticles, by varying the structure of functionalised carbons and use of thermal activation. While on activated carbon particle aggregation occurs progressively above 473 K, on nitrogen-doped carbon gold single atoms exhibit outstanding stability up to temperatures of 1073 K and under reaction conditions. By combining steady-state experiments, density functional theory, and transient mechanistic studies, we assess the relation between the metal speciation, electronic properties, and catalytic activity. The results indicate that the activity of gold-based catalysts correlates with the population of Au(i)Cl single atoms and the reaction follows a Langmuir-Hinshelwood mechanism. Strong interaction with HCl and thermodynamically favoured acetylene activation were identified as the key features of the Au(i)Cl sites that endow their superior catalytic performance in comparison to N-stabilised Au(iii) counterparts and gold nanoparticles. Finally, we show that the carrier (activated carbon versus nitrogen-doped carbon) does not affect the catalytic response, but determines the deactivation mechanism (gold particle aggregation and pore blockage, respectively), which opens up different options for the development of stable, high-performance hydrochlorination catalysts. © 2019 The Royal Society of Chemistry.
  • Item
    Metallofullerene photoswitches driven by photoinduced fullerene-to-metal electron transfer
    (Cambridge : RSC, 2021) Zalibera, Michal; Ziegs, Frank; Schiemenz, Sandra; Dubrovin, Vasilii; Lubitz, Wolfgang; Savitsky, Anton; Deng, Shihu H.M.; Wang, Xue-Bin; Advoshenko, Stanislav M.; Popov, Alexey A.
    We report on the discovery and detailed exploration of the unconventional photo-switching mechanism in metallofullerenes, in which the energy of the photon absorbed by the carbon cage π-system is transformed to mechanical motion of the endohedral cluster accompanied by accumulation of spin density on the metal atoms. Comprehensive photophysical and electron paramagnetic resonance (EPR) studies augmented by theoretical modelling are performed to address the phenomenon of the light-induced photo-switching and triplet state spin dynamics in a series of YxSc3−xN@C80 (x = 0–3) nitride clusterfullerenes. Variable temperature and time-resolved photoluminescence studies revealed a strong dependence of their photophysical properties on the number of Sc atoms in the cluster. All molecules in the series exhibit temperature-dependent luminescence assigned to the near-infrared thermally-activated delayed fluorescence (TADF) and phosphorescence. The emission wavelengths and Stokes shift increase systematically with the number of Sc atoms in the endohedral cluster, whereas the triplet state lifetime and S1–T1 gap decrease in this row. For Sc3N@C80, we also applied photoelectron spectroscopy to obtain the triplet state energy as well as the electron affinity. Spin distribution and dynamics in the triplet states are then studied by light-induced pulsed EPR and ENDOR spectroscopies. The spin–lattice relaxation times and triplet state lifetimes are determined from the temporal evolution of the electron spin echo after the laser pulse. Well resolved ENDOR spectra of triplets with a rich structure caused by the hyperfine and quadrupolar interactions with 14N, 45Sc, and 89Y nuclear spins are obtained. The systematic increase of the metal contribution to the triplet spin density from Y3N to Sc3N found in the ENDOR study points to a substantial fullerene-to-metal charge transfer in the excited state. These experimental results are rationalized with the help of ground-state and time-dependent DFT calculations, which revealed a substantial variation of the endohedral cluster position in the photoexcited states driven by the predisposition of Sc atoms to maximize their spin population.
  • Item
    Intracycle interference in ionization of Ar by a laser assisted XUV pulse
    (Bristol : IOP Publ., 2017) Arbó, D.G.; López, S. D.; Kubin, M.; Hummert, J.; Vrakking, M.J.J.; Kornilov, O.
    Synopsis We present a theoretical and experimental study of the subcycle interference in laser assisted XUV ionization of Ar atoms. Averaging over the focal volume happens to blur the intracycle interference, which thus cannot be measured directly. We show that even at these conditions, the intracycle interference can be obtained through the subtraction of two different angle and energy-resolved distributions at slightly different laser intensities.
  • Item
    Photoelectron holography in strong optical and dc electric fields
    (Bristol : Institute of Physics Publishing, 2014) Stodolna, A.; Huismans, Y.; Rouzée, A.; Lépine, F.; Vrakking, M.J.J.
    The application of velocity map imaging for the detection of photoelectrons resulting from atomic or molecular ionization allows the observation of interferometric, and in some cases holographic structures that contain detailed information on the target from which the photoelecrons are extracted. In this contribution we present three recent examples of the use of photoelectron velocity map imaging in experiments where atoms are exposed to strong optical and dc electric fields. We discuss (i) observations of the nodal structure of Stark states of hydrogen measured in a dc electric field, (ii) mid-infrared strong-field ionization of metastable Xe atoms and (iii) the reconstruction of helium electronic wavepackets in an attosecond pump-probe experiment. In each case, the interference between direct and indirect electron pathways, reminiscent of the reference and signal waves in holography, is seen to play an important role.
  • Item
    Atomic and molecular suite of R-matrix codes for ultrafast dynamics in strong laser fields and electron/positron scattering
    (Bristol : IOP Publ., 2020) Wragg, J.; Benda, J.; Mašín, Z.; Armstrong, G.S.J.; Clarke, D.D.A.; Brown, A.C.; Ballance, C.; Harvey, A.G.; Houfek, K.; Sunderland, A.; Plummer, M.; Gorfinkiel, J.D.; Van Der Hart, H.
    We describe and illustrate a number of recent developments of the atomic and molecular ab initio R-matrix suites for both time-dependent calculations of ultrafast laser-induced dynamics and time-independentcalculations of photoionization and electron scattering. © 2019 Published under licence by IOP Publishing Ltd.
  • Item
    Ultrafast Structural Changes in Chiral Molecules Measured with Free-Electron Lasers
    (Bristol : IOP Publ., 2020) Schmidt, P.; Music, V.; Hartmann, G.; Boll, R.; Erk, B.; Bari, S.; Allum, F.; Baumann, T.M.; Brenner, G.; Brouard, M.; Burt, M.; Coffee, R.; Dörner, S.; Galler, A.; Grychtol, P.; Heathcote, D.; Inhester, L.; Kazemi, M.; Larsson, M.; Li, Z.; Lutmann, A.; Manschwetus, B.; Marder, L.; Mason, R.; Moeller, S.; Osipov, T.; Otto, H.; Passow, C.; Rolles, D.; Rupprecht, P.; Schubert, K.; Schwob, L.; Thomas, R.; Vallance, C.; Von Korff Schmising, C.; Wagner, R.; Walter, P.; Wolf, T.J.A.; Zhaunerchyk, V.; Meyer, M.; Ehresmann, A.; Knie, A.; Demekhin, P.V.; Ilchen, M.
    (X-ray) free-electron lasers are employed to site specifically interrogate atomic fragments during ultra-fast photolysis of chiral molecules via time-resolved photoelectron circular dichroism. © 2020 Institute of Physics Publishing. All rights reserved.
  • Item
    Reactive species driven oxidative modifications of peptides—Tracing physical plasma liquid chemistry
    (Melville, NY : American Inst. of Physics, 2021) Wenske, Sebastian; Lackmann, Jan-Wilm; Busch, Larissa Milena; Bekeschus, Sander; von Woedtke, Thomas; Wende, Kristian
    The effluence of physical plasma consists of a significant share of reactive species, which may interact with biomolecules and yield chemical modifications comparable to those of physiological processes, e.g., post-translational protein modifications (oxPTMs). Consequentially, the aim of this work is to understand the role of physical plasma-derived reactive species in the introduction of oxPTM-like modifications in proteins. An artificial peptide library consisting of ten peptides was screened against the impact of two plasma sources, the argon-driven MHz-jet kINPen and the helium-driven RF-jet COST-Jet. Changes in the peptide molecular structure were analyzed by liquid chromatography–mass spectrometry. The amino acids cysteine, methionine, tyrosine, and tryptophan were identified as major targets. The introduction of one, two, or three oxygen atoms was the most common modification observed. Distinct modification patterns were observed for nitration (+N + 2O–H), which occurred in kINPen only (peroxynitrite), and chlorination (+Cl–H) that was exclusive for the COST-Jet in the presence of chloride ions (atomic oxygen/hypochlorite). Predominantly for the kINPen, singlet oxygen-related modifications, e.g., cleavage of tryptophan, were observed. Oxidation, carbonylation, and double oxidations were attributed to the impact of hydroxyl radicals and atomic oxygen. Leading to a significant change in the peptide side chain, most of these oxPTM-like modifications affect the secondary structure of amino acid chains, and amino acid polarity/functionality, ultimately modifying the performance and stability of cellular proteins.
  • Item
    Intracluster Coulombic decay following intense NIR ionization of clusters
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Gokhberg, Kirill; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on the observation of a novel intracluster Coulombic decay process following Rydberg atom formation in clusters ionized by intense near-infrared fields. A new decay channel emerges, in which a Rydberg atom relaxes to the ground state by transferring its excess energy to a weakly bound electron in the environment that is emitted from the cluster. We find evidence for this process in the electron spectra, where a peak close to the corresponding atomic ionization potential is observed. For Ar clusters, a decay time of 87 ps is measured, which is significantly longer than in previous time-resolved studies of interatomic Coulombic decay.
  • Item
    Self-assembly of endohedral metallofullerenes: A decisive role of cooling gas and metal-carbon bonding
    (Cambridge : Royal Society of Chemistry, 2016) Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.
    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).
  • Item
    Correlated electronic decay following intense near-infrared ionization of clusters
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on a novel correlated electronic decay process following extensive Rydberg atom formation in clusters ionized by intense near-infrared fields. A peak close to the atomic ionization potential is found in the electron kinetic energy spectrum. This new contribution is attributed to an energy transfer between two electrons, where one electron decays from a Rydberg state to the ground state and transfers its excess energy to a weakly bound cluster electron in the environment that can escape from the cluster. The process is a result of nanoplasma formation and is therefore expected to be important, whenever intense laser pulses interact with nanometer-sized particles.