Search Results

Now showing 1 - 3 of 3
  • Item
    Managing power demand from air conditioning benefits solar pv in India scenarios for 2040
    (Basel : MDPI, 2020) Ershad, Ahmad Murtaza; Pietzcker, Robert; Ueckerdt, Falko; Luderer, Gunnar
    An Indian electricity system with very high shares of solar photovoltaics seems to be a plausible future given the ever-falling solar photovoltaic (PV) costs, recent Indian auction prices, and governmental support schemes. However, the variability of solar PV electricity, i.e., the seasonal, daily, and other weather-induced variations, could create an economic barrier. In this paper, we analyzed a strategy to overcome this barrier with demand-side management (DSM) by lending flexibility to the rapidly increasing electricity demand for air conditioning through either precooling or chilled water storage. With an open-source power sector model, we estimated the endogenous investments into and the hourly dispatching of these demand-side options for a broad range of potential PV shares in the Indian power system in 2040. We found that both options reduce the challenges of variability by shifting electricity demand from the evening peak to midday, thereby reducing the temporal mismatch of demand and solar PV supply profiles. This increases the economic value of solar PV, especially at shares above 40%, the level at which the economic value roughly doubles through demand flexibility. Consequently, DSM increases the competitive and cost-optimal solar PV generation share from 33-45% (without DSM) to ∼45-60% (with DSM). These insights are transferable to most countries with high solar irradiation in warm climate zones, which amounts to a major share of future electricity demand. This suggests that technologies, which give flexibility to air conditioning demand, can be an important contribution toward enabling a solar-centered global electricity supply. © 2020 by the authors.
  • Item
    Consistency in Vulnerability Assessments of Wheat to Climate Change—A District-Level Analysis in India
    (Basel : MDPI, 2020) Dhamija, Vanshika; Shukla, Roopam; Gornott, Christoph; Joshi, PK
    In India, a reduction in wheat crop yield would lead to a widespread impact on food security. In particular, the most vulnerable people are severely exposed to food insecurity. This study estimates the climate change vulnerability of wheat crops with respect to heterogeneities in time, space, and weighting methods. The study uses the Intergovernmental Panel on Climate Change (IPCC) framework of vulnerability while using composite indices of 27 indicators to explain exposure, sensitivity, and adaptive capacity. We used climate projections under current (1975–2005) conditions and two future (2021–2050) Representation Concentration Pathways (RCPs), 4.5 and 8.5, to estimate exposure to climatic risks. Consistency across three weighting methods (Analytical Hierarchy Process (AHP), Principal Component Analysis (PCA), and Equal Weights (EWs)) was evaluated. Results of the vulnerability profile suggest high vulnerability of the wheat crop in northern and central India. In particular, the districts Unnao, Sirsa, Hardoi, and Bathinda show high vulnerability and high consistency across current and future climate scenarios. In total, 84% of the districts show more than 75% consistency in the current climate, and 83% and 68% of the districts show more than 75% consistency for RCP 4.5 and RCP 8.5 climate scenario for the three weighting methods, respectively. By using different weighting methods, it was possible to quantify “method uncertainty” in vulnerability assessment and enhance robustness in identifying most vulnerable regions. Finally, we emphasize the importance of communicating uncertainties, both in data and methods in vulnerability research, to effectively guide adaptation planning. The results of this study would serve as the basis for designing climate impacts adjusted adaptation measures for policy interventions.
  • Item
    Remote Sensing Based Yield Estimation of Rice (Oryza Sativa L.) Using Gradient Boosted Regression in India
    (Basel : MDPI, 2021) Arumugam, Ponraj; Chemura, Abel; Schauberger, Bernhard; Gornott, Christoph
    Accurate and spatially explicit yield information is required to ensure farmers’ income and food security at local and national levels. Current approaches based on crop cutting experiments are expensive and usually too late for timely income stabilization measures like crop insurances. We, therefore, utilized a Gradient Boosted Regression (GBR), a machine learning technique, to estimate rice yields at ~500 m spatial resolution for rice-producing areas in India with potential application for near real-time estimates. We used resampled intermediate resolution (~5 km) images of the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and observed yields at the district level in India for calibrating GBR models. These GBRs were then used to downscale district yields to 500 m resolution. Downscaled yields were re-aggregated for validation against out-of-sample district yields not used for model training and an additional independent data set of block-level (below district-level) yields. Our downscaled and re-aggregated yields agree well with reported district-level observations from 2003 to 2015 (r = 0.85 & MAE = 0.15 t/ha). The model performance improved further when estimating separate models for different rice cropping densities (up to r = 0.93). An additional out-of-sample validation for the years 2016 and 2017, proved successful with r = 0.84 and r = 0.77, respectively. Simulated yield accuracy was higher in water-limited, rainfed agricultural systems. We conclude that this downscaling approach of rice yield estimation using GBR is feasible across India and may complement current approaches for timely rice yield estimation required by insurance companies and government agencies.