Search Results

Now showing 1 - 2 of 2
  • Item
    Time–frequency representation of autoionization dynamics in helium
    (Bristol : IOP Publ., 2018-01-23) Busto, D.; Barreau, L.; Isinger, M.; Turconi, M.; Alexandridi, C.; Harth, A.; Zhong, S.; Squibb, R.J.; Kroon, D.; Plogmaker, S.; Miranda, M.; Jiménez-Galán, Á.; Argenti, L.; Arnold, C.L.; Feifel, R.; Martín, F.; Gisselbrecht, M.; L’Huillier, A.; Salières, P.
    Autoionization, which results from the interference between direct photoionization and photoexcitation to a discrete state decaying to the continuum by configuration interaction, is a well known example of the important role of electron correlation in light–matter interaction. Information on this process can be obtained by studying the spectral, or equivalently, temporal complex amplitude of the ionized electron wave packet. Using an energy-resolved interferometric technique, we measure the spectral amplitude and phase of autoionized wave packets emitted via the sp2+ and sp3+ resonances in helium. These measurements allow us to reconstruct the corresponding temporal profiles by Fourier transform. In addition, applying various time–frequency representations, we observe the build-up of the wave packets in the continuum, monitor the instantaneous frequencies emitted at any time and disentangle the dynamics of the direct and resonant ionization channels.
  • Item
    A molecular clock for autoionization decay
    (Bristol : IOP Publ., 2017-06-14) Medišauskas, Lukas; Bello, Roger Y.; Palacios, Alicia; González-Castrillo, Alberto; Morales, Felipe; Plimak, Lev; Smirnova, Olga; Martín, Fernando; Ivanov, Misha Yu
    The ultrafast decay of highly excited electronic states is resolved with a molecular clock technique, using the vibrational motion associated to the ionic bound states as a time-reference. We demonstrate the validity of the method in the context of autoionization of the hydrogen molecule, where nearly exact full dimensional ab-initio calculations are available. The vibrationally resolved photoionization spectrum provides a time–energy mapping of the autoionization process into the bound states that is used to fully reconstruct the decay in time. A resolution of a fraction of the vibrational period is achieved. Since no assumptions are made on the underlying coupled electron–nuclear dynamics, the reconstruction procedure can be applied to describe the general problem of the decay of highly excited states in other molecular targets.