Search Results

Now showing 1 - 10 of 24
Loading...
Thumbnail Image
Item

DNA Nanotechnology Enters Cell Membranes

2019, Huo, Shuaidong, Li, Hongyan, Boersma, Arnold J., Herrmann, Andreas

DNA is more than a carrier of genetic information: It is a highly versatile structural motif for the assembly of nanostructures, giving rise to a wide range of functionalities. In this regard, the structure programmability is the main advantage of DNA over peptides, proteins, and small molecules. DNA amphiphiles, in which DNA is covalently bound to synthetic hydrophobic moieties, allow interactions of DNA nanostructures with artificial lipid bilayers and cell membranes. These structures have seen rapid growth with great potential for medical applications. In this Review, the current state of the art of the synthesis of DNA amphiphiles and their assembly into nanostructures are first summarized. Next, an overview on the interaction of these DNA amphiphiles with membranes is provided, detailing on the driving forces and the stability of the interaction. Moreover, the interaction with cell surfaces in respect to therapeutics, biological sensing, and cell membrane engineering is highlighted. Finally, the challenges and an outlook on this promising class of DNA hybrid materials are discussed.

Loading...
Thumbnail Image
Item

Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study

2021, Li, Xin, Kong, Lingdan, Hu, Wei, Zhang, Changchang, Pich, Andrij, Shi, Xiangyang, Wang, Xipeng, Xing, Lingxi

Introduction: The striking imbalance between the ever-increasing amount of nanomedicines and low clinical translation of products has become the focus of intense debate. For clinical translation, the critical issue is to select the appropriate agents and combination regimen for targeted diseases, not to prepare increasingly complex nanoplatforms. Objectives: A safe and efficient platform, α-tocopheryl succinate (α-TOS) married 2D molybdenum disulfide, was devised by a facile method and applied for cooperative imaging-guided photothermal-selective chemotherapy of ovarian carcinoma. Methods: A novel platform of PEGylated α-TOS and folic acid (FA) conjugated 2D MoS2 nanoflakes was fabricated for the cooperative multimode computed tomography (CT)/photoacoustic (PA)/thermal imaging-guided photothermal-selective chemotherapy of ovarian carcinoma. Results: The photothermal efficiency (65.3%) of the platform under safe near-infrared irradiation is much higher than that of other photothermal materials reported elsewhere. Moreover, the covalently linked α-TOS renders platform with selective chemotherapy for cancer cells. Remarkably, with these excellent properties, the platform can be used to completely eliminate the solid tumor by safe photothermal therapy, and then kill the residual cancer cells by selective chemotherapy to prevent tumor recurrence. More significantly, barely side effects occur in the whole treatment process. The excellent efficacy and safety benefits in vivo lead to the prominent survival rate of 100% over 91 days. Conclusion: The safe and efficient platform might be a candidate of clinical nanomedicines for multimode theranostics. This study demonstrates an innovative thought in precise nanomedicine regarding the design of next generation of cancer theranostic protocol for potential clinical practice.

Loading...
Thumbnail Image
Item

Design–functionality relationships for adhesion/growth-regulatory galectins

2019, Ludwig, Anna-Kristin, Michalak, Malwina, Xiao, Qi, Gilles, Ulrich, Medrano, Francisco J., Ma, Hanyue, FitzGerald, Forrest G., Hasley, William D., Melendez-Davila, Adriel, Liu, Matthew, Rahimi, Khosrow, Kostina, Nina Yu, Rodriguez-Emmenegger, Cesar, Möller, Martin, Lindner, Ingo, Kaltner, Herbert, Cudic, Mare, Reusch, Dietmar, Kopitz, Jürgen, Romero, Antonio, Oscarson, Stefan, Klein, Michael L., Gabius, Hans-Joachim, Percec, Virgil

Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N′-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.

Loading...
Thumbnail Image
Item

Cellular responses to beating hydrogels to investigate mechanotransduction

2019, Chandorkar, Yashoda, Castro Nava, Arturo, Schweizerhof, Sjören, Van Dongen, Marcel, Haraszti, Tamás, Köhler, Jens, Zhang, Hang, Windoffer, Reinhard, Mourran, Ahmed, Möller, Martin, De Laporte, Laura

Cells feel the forces exerted on them by the surrounding extracellular matrix (ECM) environment and respond to them. While many cell fate processes are dictated by these forces, which are highly synchronized in space and time, abnormal force transduction is implicated in the progression of many diseases (muscular dystrophy, cancer). However, material platforms that enable transient, cyclic forces in vitro to recreate an in vivo-like scenario remain a challenge. Here, we report a hydrogel system that rapidly beats (actuates) with spatio-temporal control using a near infra-red light trigger. Small, user-defined mechanical forces (~nN) are exerted on cells growing on the hydrogel surface at frequencies up to 10 Hz, revealing insights into the effect of actuation on cell migration and the kinetics of reversible nuclear translocation of the mechanosensor protein myocardin related transcription factor A, depending on the actuation amplitude, duration and frequency.

Loading...
Thumbnail Image
Item

A physicochemical perspective of aging from single-cell analysis of ph, macromolecular and organellar crowding in yeast

2020, Mouton, Sara N., Thaller, David J., Crane, Matthew M., Rempel, Irina L., Terpstra, Owen T., Steen, Anton, Kaeberlein, Matt, Lusk, C. Patrick, Boersma, Arnold J., Veenhoff, Liesbeth M.

Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known. Here we show that the cytosol of yeast cells acidifies modestly in early aging and sharply after senescence. Using a macromolecular crowding sensor optimized for long-term FRET measurements, we show that crowding is rather stable and that the stability of crowding is a stronger predictor for lifespan than the absolute crowding levels. Additionally, in aged cells we observe drastic changes in organellar volume, leading to crowding on the µm scale, which we term organellar crowding. Our measurements provide an initial framework of physicochemical parameters of replicatively aged yeast cells. © 2020, eLife Sciences Publications Ltd. All rights reserved.

Loading...
Thumbnail Image
Item

Ultra-strong bio-glue from genetically engineered polypeptides

2021, Ma, Chao, Sun, Jing, Li, Bo, Feng, Yang, Sun, Yao, Xiang, Li, Wu, Baiheng, Xiao, Lingling, Liu, Baimei, Petrovskii, Vladislav S., Zhang, Jinrui, Wang, Zili, Li, Hongyan, Zhang, Lei, Li, Jingjing, Wang, Fan, Gӧstl, Robert, Potemkin, Igor I., Chen, Dong, Zeng, Hongbo, Zhang, Hongjie, Liu, Kai, Herrmann, Andreas

The development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue’s robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.

Loading...
Thumbnail Image
Item

Graphene transistors for real-time monitoring molecular self-assembly dynamics

2020, Gobbi, Marco, Galanti, Agostino, Stoeckel, Marc-Antoine, Zyska, Bjorn, Bonacchi, Sara, Hecht, Stefan, Samorì, Paolo

Mastering the dynamics of molecular assembly on surfaces enables the engineering of predictable structural motifs to bestow programmable properties upon target substrates. Yet, monitoring self-assembly in real time on technologically relevant interfaces between a substrate and a solution is challenging, due to experimental complexity of disentangling interfacial from bulk phenomena. Here, we show that graphene devices can be used as highly sensitive detectors to read out the dynamics of molecular self-assembly at the solid/liquid interface in-situ. Irradiation of a photochromic molecule is used to trigger the formation of a metastable self-assembled adlayer on graphene and the dynamics of this process are monitored by tracking the current in the device over time. In perspective, the electrical readout in graphene devices is a diagnostic and highly sensitive means to resolve molecular ensemble dynamics occurring down to the nanosecond time scale, thereby providing a practical and powerful tool to investigate molecular self-organization in 2D. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Guiding cell adhesion and motility by modulating cross-linking and topographic properties of microgel arrays

2021, Riegert, Janine, Töpel, Alexander, Schieren, Jana, Coryn, Renee, Dibenedetto, Stella, Braunmiller, Dominik, Zajt, Kamil, Schalla, Carmen, Rütten, Stephan, Zenke, Martin, Pich, Andrij, Sechi, Antonio, Blank, Kerstin G.

Biomaterial-driven modulation of cell adhesion and migration is a challenging aspect of tissue engineering. Here, we investigated the impact of surface-bound microgel arrays with variable geometry and adjustable cross-linking properties on cell adhesion and migration. We show that cell migration is inversely correlated with microgel array spacing, whereas directionality increases as array spacing increases. Focal adhesion dynamics is also modulated by microgel topography resulting in less dynamic focal adhesions on surface-bound microgels. Microgels also modulate the motility and adhesion of Sertoli cells used as a model for cell migration and adhesion. Both focal adhesion dynamics and speed are reduced on microgels. Interestingly, Gas2L1, a component of the cytoskeleton that mediates the interaction between microtubules and microfilaments, is dispensable for the regulation of cell adhesion and migration on microgels. Finally, increasing microgel cross-linking causes a clear reduction of focal adhesion turnover in Sertoli cells. These findings not only show that spacing and rigidity of surface-grafted microgels arrays can be effectively used to modulate cell adhesion and motility of diverse cellular systems, but they also form the basis for future developments in the fields of medicine and tissue engineering.

Loading...
Thumbnail Image
Item

Exploring the colloid-to-polymer transition for ultra-low crosslinked microgels from three to two dimensions

2019, Scotti, A., Bochenek, S., Brugnoni, M., Fernandez-Rodriguez, M.A., Schulte, M.F., Houston, J.E., Gelissen, A.P.H., Potemkin, I.I., Isa, L., Richtering, W.

Microgels are solvent-swollen nano- and microparticles that show prevalent colloidal-like behavior despite their polymeric nature. Here we study ultra-low crosslinked poly(N-isopropylacrylamide) microgels (ULC), which can behave like colloids or flexible polymers depending on dimensionality, compression or other external stimuli. Small-angle neutron scattering shows that the structure of the ULC microgels in bulk aqueous solution is characterized by a density profile that decays smoothly from the center to a fuzzy surface. Their phase behavior and rheological properties are those of soft colloids. However, when these microgels are confined at an oil-water interface, their behavior resembles that of flexible macromolecules. Once monolayers of ultra-low crosslinked microgels are compressed, deposited on solid substrate and studied with atomic-force microscopy, a concentration-dependent topography is observed. Depending on the compression, these microgels can behave as flexible polymers, covering the substrate with a uniform film, or as colloidal microgels leading to a monolayer of particles.

Loading...
Thumbnail Image
Item

Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization

2018, Zhao, Yongliang, Liu, Junli, Chen, Zhi, Zhu, Xiaomin, Möller, Martin

Double emulsions are complex fluid systems, in which droplets of a dispersed liquid phase contain even smaller dispersed liquid droplets. Particularly, water-in-oil-in-water double emulsions provide significant advantages over simple oil-in-water emulsions for microencapsulation, such as carrier of both aqueous and oily payloads and sustained release profile. However, double emulsions are thermodynamically unstable systems consisting typically of relatively large droplets. Here we show that nanoscale water-in-oil-in-water double emulsions can be prepared by adding a silica precursor polymer, hyperbranched polyethoxysiloxane, to the oil phase without any additional surfactants. The resulting double miniemulsions are transformed to robust water@SiO2@polymer@SiO2 nanocapsules via conversion of the precursor to silica and polymerization of the oil phase. Other intriguing nanostructures like nanorattles and Janus-like nanomushrooms can also be obtained by changing preparation conditions. This simple surfactant-free double miniemulsion polymerization technique opens a promising avenue for mass production of various complex hybrid nanostructures that are amenable to numerous applications.