Search Results

Now showing 1 - 2 of 2
  • Item
    The impact of atmospheric boundary layer, opening configuration and presence of animals on the ventilation of a cattle barn
    (Amsterdam [u.a.] : Elsevier Science, 2020) Nosek, Štěpán; Kluková, Zuzana; Jakubcová, Michaela; Yi, Qianying; Janke, David; Demeyer, Peter; Jaňour, Zbyněk
    Naturally ventilated livestock buildings (NVLB) represent one of the most significant sources of ammonia emissions. However, even the dispersion of passive gas in an NVLB is still not well understood. In this paper, we present a detailed investigation of passive pollutant dispersion in a model of a cattle barn using the wind tunnel experiment method. We simulated the pollution of the barn by a ground-level planar source. We used the time-resolved particle image velocimetry (TR-PIV) and the fast flame ionisation detector (FFID) to study the flow and dispersion processes at high spatial and temporal resolution. We employed the Proper Orthogonal Decomposition (POD) and Oscillating Patterns Decomposition (OPD) methods to detect the coherent structures of the flow. The results show that the type of atmospheric boundary layer (ABL) and sidewall opening height have a significant impact on the pollutant dispersion in the barn, while the presence of animals and doors openings are insignificant under conditions of winds perpendicular to the sidewall openings. We found that the dynamic coherent structures, developed by the Kelvin-Helmholtz instability, contribute to the pollutant transport in the barn. We demonstrate that in any of the studied cases the pollutant was not well mixed within the barn and that a significant underestimation (up to by a factor 3) of the barn ventilation might be obtained using, e.g. tracer gas method. © 2020 The Authors
  • Item
    Respiratory tract deposition of inhaled roadside ultrafine refractory particles in a polluted megacity of South-East Asia
    (Amsterdam [u.a.] : Elsevier Science, 2019) Kecorius, Simonas; Madueño, Leizel; Löndahl, Jakob; Vallar, Edgar; Galvez, Maria Cecilia; Idolor, Luisito F.; Gonzaga-Cayetano, Mylene; Müller, Thomas; Birmili, Wolfram; Wiedensohler, Alfred
    Recent studies demonstrate that Black Carbon (BC) pollution in economically developing megacities remain higher than the values, which the World Health Organization considers to be safe. Despite the scientific evidence of the degrees of BC exposure, there is still a lack of understanding on how the severe levels of BC pollution affect human health in these regions. We consider information on the respiratory tract deposition dose (DD) of BC to be essential in understanding the link between personal exposure to air pollutants and corresponding health effects. In this work, we combine data on fine and ultrafine refractory particle number concentrations (BC proxy), and activity patterns to derive the respiratory tract deposited amounts of BC particles for the population of the highly polluted metropolitan area of Manila, Philippines. We calculated the total DD of refractory particles based on three metrics: refractory particle number, surface area, and mass concentrations. The calculated DD of total refractory particle number in Metro Manila was found to be 1.6 to 17 times higher than average values reported from Europe and the U.S. In the case of Manila, ultrafine particles smaller than 100 nm accounted for more than 90% of the total deposited refractory particle dose in terms of particle number. This work is a first attempt to quantitatively evaluate the DD of refractory particles and raise awareness in assessing pollution-related health effects in developing megacities. We demonstrate that the majority of the population may be highly affected by BC pollution, which is known to have negative health outcomes if no actions are taken to mitigate its emission. For the governments of such metropolitan areas, we suggest to revise currently existing environmental legislation, raise public awareness, and to establish supplementary monitoring of black carbon in parallel to already existing PM 10 and PM 2.5 measures. © 2019