Search Results

Now showing 1 - 10 of 61
Loading...
Thumbnail Image
Item

Quantum symmetry

2020, Caspers, Martijn

The symmetry of objects plays a crucial role in many branches of mathematics and physics. It allowed, for example, the early prediction of the existence of new small particles. “Quantum symmetry” concerns a generalized notion of symmetry. It is an abstract way of characterizing the symmetry of a much richer class of mathematical and physical objects. In this snapshot we explain how quantum symmetry emerges as matrix symmetries using a famous example: Mermin’s magic square. It shows that quantum symmetries can solve problems that lie beyond the reach of classical symmetries, showing that quantum symmetries play a central role in modern mathematics.

Loading...
Thumbnail Image
Item

Prony’s method: an old trick for new problems

2018, Sauer, Tomas

In 1795, French mathematician Gaspard de Prony invented an ingenious trick to solve a recovery problem, aiming at reconstructing functions from their values at given points, which arose from a specific application in physical chemistry. His technique became later useful in many different areas, such as signal processing, and it relates to the concept of sparsity that gained a lot of well-deserved attention recently. Prony’s contribution, therefore, has developed into a very modern mathematical concept.

Loading...
Thumbnail Image
Item

Configuration spaces and braid groups

2019, Jiménez Rolland, Rita, Xicoténcatl, Miguel A.

In this snapshot we introduce configuration spaces and explain how a mathematician studies their ‘shape’. This will lead us to consider paths of configurations and braid groups, and to explore how algebraic properties of these groups determine features of the spaces.

Loading...
Thumbnail Image
Item

Searching for structure in complex data: a modern statistical quest

2021, Loh, Po-Ling

Current research in statistics has taken interesting new directions, as data collected from scientific studies has become increasingly complex. At first glance, the number of experiments conducted by a scientist must be fairly large in order for a statistician to draw correct conclusions based on noisy measurements of a large number of factors. However, statisticians may often uncover simpler structure in the data, enabling accurate statistical inference based on relatively few experiments. In this snapshot, we will introduce the concept of high-dimensional statistical estimation via optimization, and illustrate this principle using an example from medical imaging. We will also present several open questions which are actively being studied by researchers in statistics.

Loading...
Thumbnail Image
Item

Determinacy versus indeterminacy

2020, Berg, Christian

Can a continuous function on an interval be uniquely determined if we know all the integrals of the function against the natural powers of the variable? Following Weierstrass and Stieltjes, we show that the answer is yes if the interval is finite, and no if the interval is infinite.

Loading...
Thumbnail Image
Item

Tropical geometry

2018, Brugallé, Erwan, Itenberg, Ilia, Shaw, Kristin, Viro, Oleg

What kind of strange spaces hide behind the enigmatic name of tropical geometry? In the tropics, just as in other geometries, one of the simplest objects is a line. Therefore, we begin our exploration by considering tropical lines. Afterwards, we take a look at tropical arithmetic and algebra, and describe how to define tropical curves using tropical polynomials.

Loading...
Thumbnail Image
Item

Vertex-to-Self Trajectories on the Platonic Solids

2020, Athreya, Jayadev S., Aulicino, David

We consider the problem of walking in a straight line on the surface of a Platonic solid. While the tetrahedron, octahedron, cube, and icosahedron all exhibit the same behavior, we find a remarkable difference with the dodecahedron.

Loading...
Thumbnail Image
Item

Emergence in biology and social sciences

2022, Hoffmann, Franca, Merino-Aceituno, Sara

Mathematics is the key to linking scientific knowledge at different scales: from microscopic to macroscopic dynamics. This link gives us understanding on the emergence of observable patterns like flocking of birds, leaf venation, opinion dynamics, and network formation, to name a few. In this article, we explore how mathematics is able to traverse scales, and in particular its application in modelling collective motion of bacteria driven by chemical signalling.

Loading...
Thumbnail Image
Item

Formation Control and Rigidity Theory

2019, Zelazo, Daniel, Zhao, Shiyu

Formation control is one of the fundamental coordination tasks for teams of autonomous vehicles. Autonomous formations are used in applications ranging from search-and-rescue operations to deep space exploration, with benefits including increased robustness to failures and risk mitigation for human operators. The challenge of formation control is to develop distributed control strategies using vehicle onboard sensing that ensures the desired formation is obtained. This snapshot describes how the mathematical theory of rigidity has emerged as an important tool in the study of formation control problems.

Loading...
Thumbnail Image
Item

Counting self-avoiding walks on the hexagonal lattice

2019, Duminil-Copin, Hugo

In how many ways can you go for a walk along a lattice grid in such a way that you never meet your own trail? In this snapshot, we describe some combinatorial and statistical aspects of these so-called self-avoiding walks. In particular, we discuss a recent result concerning the number of self-avoiding walks on the hexagonal (“honeycomb”) lattice. In the last part, we briefly hint at the connection to the geometry of long random self-avoiding walks.