Search Results

Now showing 1 - 9 of 9
  • Item
    Las Pailas geothermal field - Central America case study: Deciphering a volcanic geothermal play type through the combination of optimized geophysical exploration methods and classic geological conceptual models of volcano-tectonic systems
    (London [u.a.] : Institute of Physics, 2019) Salguero, Leonardo SolĂ­s; Rioseco, Ernesto Meneses
    Sustainable exploitation strategies of high-enthalpy geothermal reservoirs in a volcanic geothermal play type require an accurate understanding of key geological structures such as faults, cap rock and caldera boundaries. Of same importance is the recognition of possible magmatic body intrusions and their morphology, whether they are tabular like dikes, layered like sills or domes. The relative value of those magmatic bodies, their age, shape and location rely on the role they play as possible local heat sources, hydraulic barriers between reservoir compartments, and their far-reaching effect on the geochemistry and dynamics of fluids. Obtaining detailed knowledge and a more complete understanding at the early stages of exploration through integrated geological, geophysical and geochemical methods is essential to determine promising geothermal drilling targets for optimized production/re-injection schemes and for the development of adequate exploitation programs. Valuable, extensive geophysical data gathered at Las Pailas high-enthalpy geothermal field at northwestern Costa Rica combined with detailed understanding of the geological structures in the underground may represent a sound basis for an in-depth geoscientific discussion on this topic. Currently, the German cooperation for the identification of geothermal resources in Central America, implemented by the Federal Institute for Geosciences and Natural Resources (BGR), supports an international and interdisciplinary effort, driven by the Instituto Costarricense de Electricidad (ICE) with different international and national research institutions, including the Leibniz Institute for Applied Geophysics (LIAG). The discussions and joint studies refer to the optimized utilization of geophysical and geological methods for geothermal exploration in the Central American region, using the example of Las Pailas Geothermal Field. The results should contribute to a better understanding of the most appropriate geothermal exploration concepts for complex volcanic field settings in Central America.
  • Item
    Basic material and technology investigations for material bonded hybrids by continuous hybrid profile fabrication
    (London [u.a.] : Institute of Physics, 2021) Schubert, K.; Gedan-Smolka, M.; Marschner, A.; Rietzschel, T.; Uhlig, K.; Löpitz, D.; Wagner, D.; Knobloch, M.; Karjust, Krist; Otto, Tauno; Kübarsepp, Jakob; Hussainova, Irina
    The development of multi-material hybrids by injection molding has been studied very intensively at the IPF in the past. For that, a material bonding between the different substrates was achieved by using a newly developed two-step curing powder coating material as latent reactive adhesive. The aim of the project “Hybrid Pultrusion” was to perform a novel approach for the fabrication of material bonded metal-plastic joints (profiles) in a modified pultrusion process. Therefore, powder pre-coated steel coil is combined with a glass-fiber reinforced epoxy resin matrix. For initial basic studies, the impregnated fiber material has been applied on the pre-coated steel sheets using the Resin Transfer Molding process (RTM-process). It was proved via lap shear tests, that this procedure resulted in very high adhesive strengths up to 35 MPa resulting from the formation of a covalent matrix-steel bonding as well. In addition, the failure mechanism was subsequently studied. Furthermore, by adapting the successful material combination to the pultrusion process it was demonstrated that material bonded hybrids can be achieved even under these continuous processing conditions.
  • Item
    Fabrication of a new photo-sensitized solar cell using TiO2\ZnO Nanocomposite synthesized via a modified sol-gel Technique
    (London [u.a.] : Institute of Physics, 2020) Mahdi Rheima, Ahmed; Hadi Hussain, Dhia; Jawad Abed, Hayder
    The current research synthesized was carried out using a modified solgel Technique for titanium dioxide ( TiO2) and zinc oxide (ZnO) nanocomposite. The morphology and optical properties of the synthesized nanocomposite were examined using a transmission electron microscope ( TEM) and UV-Visible spectroscopy. The structure of the synthesized nanocomposite was proved using X-ray Diffraction(XRD). The particle size of the ZnO/TiO2 nanocomposites was found to be range between 11 to 27.37 nm. The product of TEM has proof of the inclusion in the ZnO matrix of spherical TiO2particles. Also found were TiO2 sections attached to the ZnO-like rodlike particles., the ZnO/TiO2 Nanocomposites had better optical absorbing properties. The nanocomposite has been used to create a new photosensitizer solar cell with the efficiency of energy conversion of approximately 4.6%, using (E)-ethyl 4- ((4-nitrobenzylidene)) aminobenzoate as organic photo-sensitized (OPS) by (ITO/TiO2\ZnO nanocomposite/POS/iodine/silver (Ag) nanofilm/ITO).
  • Item
    Conversion of carbon dioxide into storable solar fuels using solar energy
    (London [u.a.] : Institute of Physics, 2019) Ennaceri, Houda; Abel, Bernd
    Nowadays, there are two main energy and environmental concerns, the first is the risk of running out of fossil fuels in the next few decades, and the second is the alarming increase in the carbon dioxide concentrations in the atmosphere, causing global warming and rise of see levels. Therefore, solar-driven technologies represent a substantial solution to fossil fuels dependence, global warming and climate change. Unlike most scientific research, which aim to use solar energy to generate electricity, solar energy can also be harnessed by recycling the carbon dioxide in the atmosphere through high-tech artificial photosynthesis with the objective of producing storable and liquid solar fuels from CO2 and water. There are two types of solar fuels, the first being hydrogen, which can be produced by mean of water splitting processes. The combustion of hydrogen generates water, which is a completely clean option for the environment. The second type of solar fuels consists of carbon-based fuels, such as methane (CH4), carbon monoxide (CO), or alcohols such as methanol (CH3OH) and ethanol (C2H5OH). The production to liquid solar fuels liquid fuels is of great interest, since they can be used in the current industrial infrastructures such as the automobiles' sector, without substantial changes in the vehicles' internal combustion engines. Therefore, guaranteeing a smooth transition from fossil fuel energy to renewable energy without radical economic consequences. Also, and most importantly, when these solar fuels are burned, they will only release the exact amount of CO2 which was initially used, which represents an optimal process for sustainable transport.
  • Item
    Advances in electron channelling contrast imaging and electron backscatter diffraction for imaging and analysis of structural defects in the scanning electron microscope
    (London [u.a.] : Institute of Physics, 2020) Trager-Cowan, C.; Alasmari, A.; Avis, W.; Bruckbauer, J.; Edwards, P.R.; Hourahine, B.; Kraeusel, S.; Kusch, G.; Jablon, B.M.; Johnston, R.; Martin, R.W.; Mcdermott, R.; Naresh-Kumar, G.; Nouf-Allehiani, M.; Pascal, E.; Thomson, D.; Vespucci, S.; Mingard, K.; Parbrook, P.J.; Smith, M.D.; Enslin, J.; Mehnke, F.; Kneissl, M.; Kuhn, C.; Wernicke, T.; Knauer, A.; Hagedorn, S.; Walde, S.; Weyers, M.; Coulon, P.-M.; Shields, P.A.; Zhang, Y.; Jiu, L.; Gong, Y.; Smith, R.M.; Wang, T.; Winkelmann, A.
    In this article we describe the scanning electron microscopy (SEM) techniques of electron channelling contrast imaging and electron backscatter diffraction. These techniques provide information on crystal structure, crystal misorientation, grain boundaries, strain and structural defects on length scales from tens of nanometres to tens of micrometres. Here we report on the imaging and analysis of dislocations and sub-grains in nitride semiconductor thin films (GaN and AlN) and tungsten carbide-cobalt (WC-Co) hard metals. Our aim is to illustrate the capability of these techniques for investigating structural defects in the SEM and the benefits of combining these diffraction-based imaging techniques.
  • Item
    Ambient noise analysis for characterizing sub-surface dynamic parameters
    (London [u.a.] : Institute of Physics, 2020) Setiawan, B.; Saidi, T.; Yuliannur, A.; Polom, U.; Ramadhansyah, P.J.; Ali, M.I.
    Ambient noise analysis of horizontal to vertical spectral ratio (HVSR) method has been used widely to provide reliable estimates of the site fundamental frequency and to constrain the inversion of near-surface shear wave velocity. The present paper focuses on the site measurement using the aforementioned analysis by means of the HVSR method for characterizing sub-surface dynamic parameters in the City of Banda Aceh, Indonesia. A Guralp CMG-6TD broadband seismometer was used in this study to cover a wide frequency range from 0.033 Hz to 50 Hz in standard operation. The instrument was deployed at two different sites (i.e. Location#1 of Blang Padang and Location#2 of Stadion Dirmutala) in the City of Banda Aceh for at least 2 hours for ambient noise recording. This continuous of 2 hours' microtremor time series was separated into 30 minutes record from which the site fundamental frequency and shear wave velocity of the measured site were deduced. The later sub-surface dynamic parameter was validated using another technique of reflection seismic. This investigation suggests the fundamental frequency of 0.45 Hz at Location#1 and of 0.65 Hz at Location#2. The estimated shear wave velocity of the top 30 m, Vs,30 of this investigation is 165 m/s at Location#1 and 156 m/s at Location#2. Both the site fundamental frequency and shear wave velocity are important for infrastructure design in the high seismic region of Banda Aceh, Indonesia.
  • Item
    Preliminary Study on the Application of Temperature Swing Adsorption in Aqueous Phase for Pesticide Removal
    (London [u.a.] : Institute of Physics, 2018) Aumeier, B.; Dang, H.Q.A.; Wessling, M.
    Temperature swing adsorption (TSA) is a well-established process for gas purification. In this work, the feasibility of TSA in aqueous phase was studied. This concept could enable in situ adsorbent regeneration and thus fostering sustainable decentralized adsorption processes applied to water treatment. The adsorption processes with the use of granular activated carbon (GAC) have been widely applied to remove the residual amounts of pesticides in water treatment. Amitrole was chosen as a typical pesticide in this study, GAC was selected as the main adsorbent for amitrole removal. Adsorption isotherm experiments were conducted at different temperatures of 20°C, 57°C and 94°C to identify the most appropriate sorptive – sorbent system for dynamic adsorption and TSA research. Once the isotherm experiments were accomplished, breakthrough curve experiments were subsequently investigated. Finally, TSA process was conducted with the activated carbon regeneration at the elevated temperature of 125°C. Consequently, initial obtained results proved the feasibility of the proposed TSA technique for pesticide removal in aqueous phase.
  • Item
    Computational Simulations of the Lateral-Photovoltage-Scanning-Method
    (London [u.a.] : Institute of Physics, 2018) Kayser, S.; Lüdge, A.; Böttcher, K.
    The major task for the Lateral-Photovoltage-Scanning-Method is to detect doping striations and the shape of the solid-liquid-interface of an indirect semiconductor crystal. This method is sensitive to the gradient of the charge carrier density. Attempting to simulate the signal generation of the LPS-Method, we are using a three dimensional Finite Volume approach for solving the van Roosbroeck equations with COMSOL Multiphysics in a silicon sample. We show that the simulated LPS-voltage is directly proportional to the gradient of a given doping distribution, which is also the case for the measured LPS-voltage.
  • Item
    Chemical Bonded PA66-PTFE-Oil Composites as Novel Tribologically Effective Materials: Part 2
    (London [u.a.] : Institute of Physics, 2021) Nguyen, Thanh-Duong; Kamga, Lionel Simo; Gedan-Smolka, Michaela; Sauer, Bernd; Emrich, Stefan; Kopnarski, Michael; Voit, Brigitte; Karjust, Krist; Otto, Tauno; KĂĽbarsepp, Jakob; Hussainova, Irina
    Polytetrafluoroethylene (PTFE) exhibits excellent non-stick properties and a very low coefficient of friction under tribological stress, but it is incompatible with almost all other polymers. In the first part of this study we presented the generation of the novel tribological material based on unsaturated oil, radiation-modified PTFE (MP1100) and Polyamide 66 (PA66). To get a better understanding of the chemical properties and chemical composition of the compounds, the PA66-MP1100-oil-cb (chemical bonded) compounds were examined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). In this part, the mechanical properties of the compounds are compared with plain PA66 and PA66-MP1100-cb. The tribological investigation was carried out using the Block-on-Ring tribometer. It was found that the mechanical properties of PA66-MP1100-oil-cb with 20 wt.% MP1100-oil-cb only show slight differences compared to PA66, but the tribological properties of the compounds have been significantly improved through chemical coupling between the three components. Finally, the amount of the compound that was deposited on the surface of the steel disc counterpart was analyzed after the tribological testing.