Search Results

Now showing 1 - 10 of 96
  • Item
    Climatologies and long-term changes in mesospheric wind and wave measurements based on radar observations at high and mid latitudes
    (Göttingen : Copernicus GmbH, 2019) Wilhelm, S.; Stober, G.; Brown, P.
    We report on long-term observations of atmospheric parameters in the mesosphere and lower thermosphere (MLT) made over the last 2 decades. Within this study, we show, based on meteor wind measurement, the long-term variability of winds, tides, and kinetic energy of planetary and gravity waves. These measurements were done between the years 2002 and 2018 for the high-latitude location of Andenes (69.3°N, 16°E) and the mid-latitude locations of Juliusruh (54.6°N, 13.4°E) and Tavistock (43.3°N, 80.8°W). While the climatologies for each location show a similar pattern, the locations differ strongly with respect to the altitude and season of several parameters. Our results show annual wind tendencies for Andenes which are toward the south and to the west, with changes of up to 3°m s-1 per decade, while the mid-latitude locations show smaller opposite tendencies to negligible changes. The diurnal tides show nearly no significant long-term changes, while changes for the semidiurnal tides differ regarding altitude. Andenes shows only during winter a tidal weakening above 90°km, while for the Canadian Meteor Orbit Radar (CMOR) an enhancement of the semidiurnal tides during the winter and a weakening during fall occur. Furthermore, the kinetic energy for planetary waves showed strong peak values during winters which also featured the occurrence of sudden stratospheric warming. The influence of the 11-year solar cycle on the winds and tides is presented. The amplitudes of the mean winds exhibit a significant amplitude response for the zonal component below 82°km during summer and from November to December between 84 and 95°km at Andenes and CMOR. The semidiurnal tides (SDTs) show a clear 11-year response at all locations, from October to November. © 2019 by ASME.
  • Item
    Long-term studies of mesosphere and lower-thermosphere summer length definitions based on mean zonal wind features observed for more than one solar cycle at middle and high latitudes in the Northern Hemisphere
    (Katlenburg, Lindau : Copernicus, 2022) Jaen, Juliana; Renkwitz, Toralf; Chau, Jorge L.; He, Maosheng; Hoffmann, Peter; Yamazaki, Yosuke; Jacobi, Christoph; Tsutsumi, Masaki; Matthias, Vivien; Hall, Chris
    Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (g1/4g54g gN) and northern Norway (g1/4g69g gN). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower-thermosphere summer length (MLT-SL) using SMR and PRR winds and (2) the mesosphere summer length (M-SL) using the PRR and MLS. Under both definitions, the summer begins around April and ends around middle September. The largest year-to-year variability is found in the summer beginning in both definitions, particularly at high latitudes, possibly due to the influence of the polar vortex. At high latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity as well as large-scale atmospheric influences (e.g., quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at middle latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.
  • Item
    Greenhouse gas effects on the solar cycle response of water vapour and noctilucent clouds
    (Katlenburg, Lindau : Copernicus, 2023) Vellalassery, Ashique; Baumgarten, Gerd; Grygalashvyly, Mykhaylo; Lübken, Franz-Josef
    The responses of water vapour (H2O) and noctilucent clouds (NLCs) to the solar cycle are studied using the Leibniz Institute for Middle Atmosphere (LIMA) model and the Mesospheric Ice Microphysics And tranSport (MIMAS) model. NLCs are sensitive to the solar cycle because their formation depends on background temperature and the H2O concentration. The solar cycle affects the H2O concentration in the upper mesosphere mainly in two ways: directly through the photolysis and, at the time and place of NLC formation, indirectly through temperature changes. We found that H2O concentration correlates positively with the temperature changes due to the solar cycle at altitudes above about 82 km, where NLCs form. The photolysis effect leads to an anti-correlation of H2O concentration and solar Lyman-α radiation, which gets even more pronounced at altitudes below ∼83 km when NLCs are present. We studied the H2O response to Lyman-α variability for the period 1992 to 2018, including the two most recent solar cycles. The amplitude of Lyman-α variation decreased by about 40 % in the period 2005 to 2018 compared to the preceding solar cycle, resulting in a lower H2O response in the late period. We investigated the effect of increasing greenhouse gases (GHGs) on the H2O response throughout the solar cycle by performing model runs with and without increases in carbon dioxide (CO2) and methane (CH4). The increase of methane and carbon dioxide amplifies the response of water vapour to the solar variability. Applying the geometry of satellite observations, we find a missing response when averaging over altitudes of 80 to 85 km, where H2O has a positive response and a negative response (depending on altitude), which largely cancel each other out. One main finding is that, during NLCs, the solar cycle response of H2O strongly depends on altitude.
  • Item
    Local stratopause temperature variabilities and their embedding in the global context
    (Göttingen : Copernicus Publ., 2020) Eixmann, Ronald; Matthias, Vivien; Höffner, Josef; Baumgarten, Gerd; Gerding, Michael
    The stratopause is by definition the transition between the stratosphere and mesosphere. During winter the circulation at mid-latitudes and high latitudes in the stratosphere is mainly driven by quasi-stationary planetary waves (PWs), while the circulation in the mesosphere is mainly driven by gravity waves (GWs). The question arises of whether PWs or GWs dominate the variability of the stratopause. The most famous and dramatic variability of the middle atmosphere is a sudden stratospheric warming (SSW) generated by PWs interacting with the polar vortex. A similar phenomenon but smaller in magnitude and more regional is stratopause temperature enhancements (STEs) initially observed by local measurements and generated by breaking PWs. Thus it seems that PWs dominate the variability of the stratopause. In this study we want to quantify to which extent quasi-stationary PWs contribute to the stratopause variability. To do that we combine local lidar observations at Kühlungsborn (54∘ N, 11∘ E) and Andenes (69∘ N, 16∘ E) with global MERRA-2 reanalysis data bringing the local variability of the stratopause into the global context. Therefore we compare the temperature time series at Kühlungsborn and Andenes at 2 hPa, the altitude where STEs maximize, with characteristics (amplitude and phase) of PWs with wave numbers 1, 2 and 3. We found that for Kühlungsborn and Andenes 98 % of the local day-to-day variability of the stratopause can be explained by the variability of PWs with wave number 1, 2 and 3. Thus, the winter stratopause day-to-day variability is highly dominated by the variability of PWs.
  • Item
    A Method for Retrieving Stratospheric Aerosol Extinction and Particle Size from Ground-Based Rayleigh-Mie-Raman Lidar Observations
    (Basel, Switzerland : MDPI AG, 2020) Zalach, Jacob; von Savigny, Christian; Langenbach, Arvid; Baumgarten, Gerd; Lübken, Franz-Josef; Bourassa, Adam
    We report on the retrieval of stratospheric aerosol particle size and extinction coefficient profiles from multi-color backscatter measurements with the Rayleigh-Mie-Raman lidar operated at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) in northern Norway. The retrievals are based on a two-step approach. In a first step, the median radius of an assumed monomodal log-normal particle size distribution with fixed width is retrieved based on a color index formed from the measured backscatter ratios at the wavelengths of 1064nm and 532 nm. An intrinsic ambiguity of the retrieved aerosol size information is discussed. In a second step, this particle size information is used to convert the measured lidar backscatter ratio to aerosol extinction coefficients. The retrieval is currently based on monthly-averaged lidar measurements and the results for March 2013 are discussed. A sensitivity study is presented that allows for establishing an error budget for the aerosol retrievals. Assuming a monomodal log-normal aerosol particle size distribution with a geometric width of S = 1.5, median radii on the order of below 100 nm are retrieved. The median radii are found to generally decrease with increasing altitude. The retrieved aerosol extinction profiles are compared to observations with the OSIRIS (Optical Spectrograph and InfraRed Imager System) and the OMPS-LP (Ozone Mapping Profiling Suite Limb Profiler) satellite instruments in the 60° N to 80° N latitude band. The extinction profiles that were retrieved from the lidar measurements show good agreement with the observations of the two satellite instruments when taking the different wavelengths of the instruments into account. © 2020 by the authors.
  • Item
    On the Buoyancy Subrange in Stratified Turbulence
    (Basel : MDPI AG, 2020) Avsarkisov, Victor
    This study is motivated by the importance of the stratified turbulence in geophysical flows. We present a theoretical analysis of the buoyancy subrange based on the theory of strongly stratified turbulence. Some important turbulent scales and their relations are explored. Scaling constants of the buoyancy subrange scaling laws for both kinetic and potential energy spectra are derived and analyzed. It is found that these constants are functions of the horizontal Froude number Frh . For the potential energy spectrum, the scaling constant also depends on the turbulent flux coefficient of Γ .
  • Item
    Atomic oxygen number densities in the mesosphere–lower thermosphere region measured by solid electrolyte sensors onWADIS-2
    (Katlenburg-Lindau : Copernicus, 2019) Eberhart, Martin; Löhle, Stefan; Strelnikov, Boris; Hedin, Jonas; Khaplanov, Mikhail; Fasoulas, Stefanos; Gumbel, Jörg; Lübken, Franz-Josef; Rapp, Markus
    Absolute profiles of atomic oxygen number densities with high vertical resolution have been determined in the mesosphere-lower thermosphere (MLT) region from in situ measurements by several rocket-borne solid electrolyte sensors. The amperometric sensors were operated in both controlled and uncontrolled modes and with various orientations on the foredeck and aft deck of the payload. Calibration was based on mass spectrometry in a molecular beam containing atomic oxygen produced in a microwave discharge. The sensor signal is proportional to the number flux onto the electrodes, and the mass flow rate in the molecular beam was additionally measured to derive this quantity from the spectrometer reading. Numerical simulations provided aerodynamic correction factors to derive the atmospheric number density of atomic oxygen from the sensor data. The flight results indicate a preferable orientation of the electrode surface perpendicular to the rocket axis. While unstable during the upleg, the density profiles measured by these sensors show an excellent agreement with the atmospheric models and photometer results during the downleg of the trajectory. The high spatial resolution of the measurements allows for the identification of small-scale variations in the atomic oxygen concentration. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    A new method of inferring the size, number density, and charge of mesospheric dust from its in situ collection by the DUSTY probe
    (Katlenburg-Lindau : Copernicus, 2019) Havnes, Ove; Antonsen, Tarjei; Baumgarten, Gerd; Hartquist, Thomas W.; Biebricher, Alexander; Fredriksen, Åshild; Friedrich, Martin; Hedin, Jonas
    We present a new method of analyzing measurements of mesospheric dust made with DUSTY rocket-borne Faraday cup probes. It can yield the variation in fundamental dust parameters through a mesospheric cloud with an altitude resolution down to 10 cm or less if plasma probes give the plasma density variations with similar height resolution. A DUSTY probe was the first probe that unambiguously detected charged dust and aerosol particles in the Earth's mesosphere. DUSTY excluded the ambient plasma by various biased grids, which however allowed dust particles with radii above a few nanometers to enter, and it measured the flux of charged dust particles. The flux measurements directly yielded the total ambient dust charge density. We extend the analysis of DUSTY data by using the impact currents on its main grid and the bottom plate as before, together with a dust charging model and a secondary charge production model, to allow the determination of fundamental parameters, such as dust radius, charge number, and total dust density. We demonstrate the utility of the new analysis technique by considering observations made with the DUSTY probes during the MAXIDUSTY rocket campaign in June-July 2016 and comparing the results with those of other instruments (lidar and photometer) also used in the campaign. In the present version we have used monodisperse dust size distributions.© Author(s) 2019.
  • Item
    Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
    (Katlenburg-Lindau : European Geosciences Union, 2021) Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; Zeng, Guang; Zhang, Jiankai; Bodeker, Greg; Burrows, Susannah; Cameron-Smith, Philip; Cugnet, David; Danek, Christopher; Deushi, Makoto; Horowitz, Larry W.; Kubin, Anne; Li, Lijuan; Lohmann, Gerrit; Michou, Martine; Mills, Michael J.; Nabat, Pierre; Olivié, Dirk; Park, Sungsu; Seland, Øyvind; Stoll, Jens; Wieners, Karl-Hermann; Wu, Tongwen
    Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here, we evaluate long-term changes in these species from the pre-industrial period (1850) to the end of the 21st century in Coupled Model Intercomparison Project phase 6 (CMIP6) models under a range of future emissions scenarios. There is good agreement between the CMIP multi-model mean and observations for total column ozone (TCO), although there is substantial variation between the individual CMIP6 models. For the CMIP6 multi-model mean, global mean TCO has increased from ∼300 DU in 1850 to ∼ 305 DU in 1960, before rapidly declining in the 1970s and 1980s following the use and emission of halogenated ozone-depleting substances (ODSs). TCO is projected to return to 1960s values by the middle of the 21st century under the SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5 scenarios, and under the SSP3-7.0 and SSP5-8.5 scenarios TCO values are projected to be ∼ 10 DU higher than the 1960s values by 2100. However, under the SSP1-1.9 and SSP1-1.6 scenarios, TCO is not projected to return to the 1960s values despite reductions in halogenated ODSs due to decreases in tropospheric ozone mixing ratios. This global pattern is similar to regional patterns, except in the tropics where TCO under most scenarios is not projected to return to 1960s values, either through reductions in tropospheric ozone under SSP1-1.9 and SSP1-2.6, or through reductions in lower stratospheric ozone resulting from an acceleration of the Brewer-Dobson circulation under other Shared Socioeconomic Pathways (SSPs). In contrast to TCO, there is poorer agreement between the CMIP6 multi-model mean and observed lower stratospheric water vapour mixing ratios, with the CMIP6 multi-model mean underestimating observed water vapour mixing ratios by ∼ 0.5 ppmv at 70 hPa. CMIP6 multi-model mean stratospheric water vapour mixing ratios in the tropical lower stratosphere have increased by ∼ 0.5 ppmv from the pre-industrial to the present-day period and are projected to increase further by the end of the 21st century. The largest increases (∼ 2 ppmv) are simulated under the future scenarios with the highest assumed forcing pathway (e.g. SSP5-8.5). Tropical lower stratospheric water vapour, and to a lesser extent TCO, shows large variations following explosive volcanic eruptions. © Author(s) 2021.
  • Item
    Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
    (Katlenburg-Lindau : European Geosciences Union, 2021) Geldenhuys, Markus; Preusse, Peter; Krisch, Isabell; Zülicke, Christoph; Ungermann, Jörn; Ern, Manfred; Friedl-Vallon, Felix; Riese, Martin
    To better understand the impact of gravity waves (GWs) on the middle atmosphere in the current and future climate, it is essential to understand their excitation mechanisms and to quantify their basic properties. Here a new process for GW excitation by orography-jet interaction is discussed. In a case study, we identify the source of a GW observed over Greenland on 10 March 2016 during the POLSTRACC (POLar STRAtosphere in a Changing Climate) aircraft campaign. Measurements were taken with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) instrument deployed on the High Altitude Long Range (HALO) German research aircraft. The measured infrared limb radiances are converted into a 3D observational temperature field through the use of inverse modelling and limited-angle tomography. We observe GWs along a transect through Greenland where the GW packet covers ≈1/3 of the Greenland mainland. GLORIA observations indicate GWs between 10 and 13km of altitude with a horizontal wavelength of 330km, a vertical wavelength of 2km and a large temperature amplitude of 4.5K. Slanted phase fronts indicate intrinsic propagation against the wind, while the ground-based propagation is with the wind. The GWs are arrested below a critical layer above the tropospheric jet. Compared to its intrinsic horizontal group velocity (25-72ms-1) the GW packet has a slow vertical group velocity of 0.05-0.2ms-1. This causes the GW packet to propagate long distances while spreading over a large area and remaining constrained to a narrow vertical layer. A plausible source is not only orography, but also out-of-balance winds in a jet exit region and wind shear. To identify the GW source, 3D GLORIA observations are combined with a gravity wave ray tracer, ERA5 reanalysis and high-resolution numerical experiments. In a numerical experiment with a smoothed orography, GW activity is quite weak, indicating that the GWs in the realistic orography experiment are due to orography. However, analysis shows that these GWs are not mountain waves. A favourable area for spontaneous GW emission is identified in the jet by the cross-stream ageostrophic wind, which indicates when the flow is out of geostrophic balance. Backwards ray-tracing experiments trace into the jet and regions where the Coriolis and the pressure gradient forces are out of balance. The difference between the full and a smooth-orography experiment is investigated to reveal the missing connection between orography and the out-of-balance jet. We find that this is flow over a broad area of elevated terrain which causes compression of air above Greenland. The orography modifies the wind flow over large horizontal and vertical scales, resulting in out-of-balance geostrophic components. The out-of-balance jet then excites GWs in order to bring the flow back into balance. This is the first observational evidence of GW generation by such an orography-jet mechanism.