Search Results

Now showing 1 - 6 of 6
  • Item
    Information extraction pipelines for knowledge graphs
    (London : Springer, 2023) Jaradeh, Mohamad Yaser; Singh, Kuldeep; Stocker, Markus; Both, Andreas; Auer, Sören
    In the last decade, a large number of knowledge graph (KG) completion approaches were proposed. Albeit effective, these efforts are disjoint, and their collective strengths and weaknesses in effective KG completion have not been studied in the literature. We extend Plumber, a framework that brings together the research community’s disjoint efforts on KG completion. We include more components into the architecture of Plumber to comprise 40 reusable components for various KG completion subtasks, such as coreference resolution, entity linking, and relation extraction. Using these components, Plumber dynamically generates suitable knowledge extraction pipelines and offers overall 432 distinct pipelines. We study the optimization problem of choosing optimal pipelines based on input sentences. To do so, we train a transformer-based classification model that extracts contextual embeddings from the input and finds an appropriate pipeline. We study the efficacy of Plumber for extracting the KG triples using standard datasets over three KGs: DBpedia, Wikidata, and Open Research Knowledge Graph. Our results demonstrate the effectiveness of Plumber in dynamically generating KG completion pipelines, outperforming all baselines agnostic of the underlying KG. Furthermore, we provide an analysis of collective failure cases, study the similarities and synergies among integrated components and discuss their limitations.
  • Item
    Scientific publishing sanctions in response to the Russo-Ukrainian war
    (Chichester : Wiley, 2022) Nazarovets, Maryna; Teixeira da Silva, Jaime A.
    The Russian invasion of Ukraine is negatively affecting the development of the Ukrainian academy, now and in the foreseeable future. Different academic stakeholders around the world have reacted differently to this war, some imposing sanctions against Russia and/or providing aid to Ukraine. Some scientific publishers have partially or temporarily suspended sales and marketing of products and services to research organizations in Russia and Belarus. The issue of banning publication in international journals by authors from Russian institutions remains controversial and needs to be carefully considered by various stakeholders. © 2022 The Authors. Learned Publishing published by John Wiley & Sons Ltd on behalf of ALPSP
  • Item
    Caching and Reproducibility: Making Data Science Experiments Faster and FAIRer
    (Lausanne : Frontiers Media, 2022) Schubotz, Moritz; Satpute, Ankit; Greiner-Petter, André; Aizawa, Akiko; Gipp, Bela
    Small to medium-scale data science experiments often rely on research software developed ad-hoc by individual scientists or small teams. Often there is no time to make the research software fast, reusable, and open access. The consequence is twofold. First, subsequent researchers must spend significant work hours building upon the proposed hypotheses or experimental framework. In the worst case, others cannot reproduce the experiment and reuse the findings for subsequent research. Second, suppose the ad-hoc research software fails during often long-running computational expensive experiments. In that case, the overall effort to iteratively improve the software and rerun the experiments creates significant time pressure on the researchers. We suggest making caching an integral part of the research software development process, even before the first line of code is written. This article outlines caching recommendations for developing research software in data science projects. Our recommendations provide a perspective to circumvent common problems such as propriety dependence, speed, etc. At the same time, caching contributes to the reproducibility of experiments in the open science workflow. Concerning the four guiding principles, i.e., Findability, Accessibility, Interoperability, and Reusability (FAIR), we foresee that including the proposed recommendation in a research software development will make the data related to that software FAIRer for both machines and humans. We exhibit the usefulness of some of the proposed recommendations on our recently completed research software project in mathematical information retrieval.
  • Item
    Influence of molecular weight of polycation polydimethyldiallylammonium and carbon nanotube content on electric conductivity of layer-by-layer films
    (Amsterdam [u.a.] : Elsevier, 2022) Neuber, Sven; Sill, Annekatrin; Efthimiopoulos, Ilias; Nestler, Peter; Fricke, Katja; Helm, Christiane A.
    For biological and engineering applications, nm-thin films with high electrical conductivity and tunable sheet resistance are desirable. Multilayers of polydimethyldiallylammonium chloride (PDADMA) with two different molecular weights (322 and 44.3 kDa) and oxidized carbon nanotubes (CNTs) were constructed using the layer-by-layer technique. The surface coverage of the CNTs was monitored with a selected visible near infrared absorption peak. Both the film thickness and the surface coverage of the CNTs increased linearly with the number of CNT/PDADMA bilayers deposited (film thickness up to 80 nm). Atomic force microscopy images showed a predominantly surface-parallel orientation of CNTs. Ohmic behavior with constant electrical conductivity of each CNT/PDADMA film and conductivity up to 4 · 103 S/m was found. A change in PDADMA molecular weight by almost a factor of ten has no effect on the film thickness and electrical conductivity, only the film/air roughness is reduced. However, increasing CNT concentration in the deposition dispersion from 0.15 up to 0.25 mg/ml results in an increased thickness of a CNT/PDADMA bilayer (by a factor of three). The increased bilayer thickness is accompanied by a decreased electrical conductivity (by a factor of four). The decreased conductivity is attributed to the increased monomer/CNT ratio.
  • Item
    Spontaneous fluctuations in a plasma ion assisted deposition – correlation between deposition conditions and vanadium oxide thin film growth
    (Amsterdam [u.a.] : Elsevier, 2021) Frank, Anna; Dias, Miguel; Hieke, Stefan; Kruth, Angela; Scheu, Christina
    In this work correlations between thin film crystallinity of plasma ion assisted electron beam evaporated vanadium oxide (VOx) and fluctuations of the deposition parameters during the growth process could be observed by in situ monitoring deposition conditions and electron microscopy studies. In the presented case, unintentional fluctuations in the gas flow at the plasma source caused by inhomogeneous melting of the target material lead to an increase in discharge current and therefore a decrease of the oxygen flow in the plasma source, resulting in the formation of highly crystalline bands due to a temporary increase in energy flux. The major part of the VOx thin film consists of a large number of nanocrystals embedded in an amorphous phase. In-depth structural analysis confirms a mixture of V2O5, in different modifications, VO2, as well as the mixed-valence oxides V4O9 and V6O13, for nanocrystalline parts and crystalline bands. These differ mainly in the degree of crystallinity being influenced by variations in discharge current, and partly in the amount of higher oxidized vanadium oxides. In future, precisely controlled variation of plasma source conditions will open up pathways to control and tailor crystallinity of electron beam evaporated thin films, allowing for production methods for patterned thin films or layers with graduated crystallinity. This may give rise to a new class of coatings of nanohybrids combining amorphous VOx with low electrical conductivity and crystalline domains providing a higher electrical conductivity which is useful for electrochromic displays, smart windows, and solar cells.
  • Item
    Energy-dependent dielectric tensor axes in monoclinic α-3,4,9,10-perylene tetracarboxylic dianhydride
    (Amsterdam [u.a.] : Elsevier, 2023) Alonso, M.I.; Garriga, M.; Ossó, J.O.; Schreiber, F.; Scholz, R.
    We have determined the complex dielectric tensor of single crystalline 3,4,9,10-perylene tetracarboxylic dianhydride (α-PTCDA) as a function of energy in the range between 1.4 and 5.0 eV. The results obtained reflect the monoclinic symmetry of the crystal: The principal axes of the real and the imaginary part of the tensor in general do not coincide and show chromatic dispersion. Monoclinic behavior allows rotation of the components ɛX and ɛZ in the plane perpendicular to the unique symmetry axis Y. The experimental results indicate that the energies of the optical transitions observed in the weak ɛX component coincide with energies in which a resonance effect due to coupling with the stronger ɛZ component occurs. These resonances appear at energies close to electronic excitations such as the optical gap, the transport gap and the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) peak-to-peak gap and their assignments are discussed based on theoretical calculations.