Search Results

Now showing 1 - 2 of 2
  • Item
    Tailoring morphology in titania nanotube arrays by implantation: experiments and modelling on designed pore size—and beyond
    (London [u.a.] : Taylor & Francis, 2021) Kupferer, Astrid; Mändl, Stephan; Mayr, Stefan G.
    Titania nanotube arrays are an exceptionally adaptable material for various applications ranging from energy conversion to biomedicine. Besides electronic properties, structural morphology on nanometre scale is essential. It is demonstrated that ion implantation constitutes a versatile method for the synthesis of tailored nanotube morphologies. Experimental-phenomenological observations reveal a successive closing behaviour of nanotubes upon ion implantation. Employing molecular dynamics calculations in combination with analytical continuum models, the physical origins of this scenario are unravelled by identifying ion bombardment induced viscous flow driven by capillarity as its underlying mechanism besides minor contributions from sputtering and redeposition. These findings enable the tailoring of nanotube arrays suitable for manifold applications.
  • Item
    Secondary electron yield engineering of copper surfaces by 532 nm ultrashort laser pulses
    (Amsterdam [u.a.] : Elsevier, 2022) Lorenz, Pierre; Bez, Elena; Himmerlich, Marcel; Ehrhardt, Martin; Taborelli, Mauro; Zimmer, Klaus
    Nanostructured surfaces exhibit outstanding properties and enable manifold industrial applications. In this study the laser surface processing of polycrystalline, flat copper surfaces by 532 nm picosecond laser irradiation for secondary electron yield (SEY) reduction is reported. The laser beam was scanned in parallel lines across the sample surface in order to modify large surface areas. Morphology and SEY are characterized in dependence of the process parameters to derive correlations and mechanisms of the laser-based SEY engineering process. The nano- and microstructure morphology of the laser-modified surface was characterized by scanning electron microscopy and the secondary electron yield was measured. In general, an SEY reduction with increasing accumulated laser fluence was found. In particular, at low scanning speed (1 mm/s - 10 mm/s) and “high” laser power (~ 1 W) compact nanostructures with a very low SEY maximum of 0.7 are formed.