Search Results

Now showing 1 - 2 of 2
  • Item
    Unusual spin pseudogap behavior in the spin web lattice Cu3TeO6 probed by 125Te nuclear magnetic resonance
    (College Park, MD : APS, 2021) Baek, Seung-Ho; Yeo, Hyeon Woo; Park, Jena; Choi, Kwang-Yong; Büchner, Bernd
    We present a 125Te nuclear magnetic resonance (NMR) study in the three-dimensional spin web lattice Cu3TeO6 which harbors topological magnons. The 125Te NMR spectra and the Knight-shift K as a function of temperature show a drastic change at TS∼40K much lower than the Néel ordering temperature TN∼61K, providing evidence for the first-order structural phase transition within the magnetically ordered state. Most remarkably, the temperature dependence of the spin-lattice relaxation rate T−11 unravels spin-gap-like magnetic excitations, which sharply sets in at T∗∼75K, the temperature well above TN. The spin-gap behavior may be understood by weakly dispersive optical magnon branches of high-energy spin excitations originating from the unique corner-sharing Cu hexagon spin-1/2 network with low coordination number.
  • Item
    Chirality flip of Weyl nodes and its manifestation in strained MoTe2
    (College Park, MD : APS, 2021) Könye, Viktor; Bouhon, Adrien; Fulga, Ion Cosma; Slager, Robert-Jan; van den Brink, Jeroen; Facio, Jorge I.
    Due to their topological charge, or chirality, the Weyl cones present in topological semimetals are considered robust against arbitrary perturbations. One well-understood exception to this robustness is the pairwise creation or annihilation of Weyl cones, which involves the overlap of two oppositely charged nodes in energy and momentum. Here we show that their topological charge can in fact change sign, in a process that involves the merging of not two, but three Weyl nodes. This is facilitated by the presence of rotation and time-reversal symmetries, which constrain the relative positions of Weyl cones in momentum space. We analyze the chirality flip process, showing that transport properties distinguish it from the conventional, double Weyl merging. Moreover, we predict that the chirality flip occurs in MoTe$_2$, where experimentally accessible strain leads to the merging of three Weyl cones close to the Fermi level. Our work sets the stage to further investigate and observe such chirality flipping processes in different topological materials.