Search Results

Now showing 1 - 2 of 2
  • Item
    Exploring the intrinsic limit of the charge-carrier-induced increase of the Curie temperature of Lu- and La-doped EuO thin films
    (College Park, MD : APS, 2020) Held, R.; Mairoser, T.; Melville, A.; Mundy, J.A.; Holtz, M.E.; Hodash, D.; Wang, Z.; Heron, J.T.; Dacek, S.T.; Holländer, B.; Muller, D.A.; Schlom, D.G.
    Raising the Curie temperature TC of the highly spin-polarized semiconductor EuO by doping it with rare-earth elements is a strategy to make EuO more technologically relevant to spintronics. The increase of TC with free carrier density n and the surprisingly low dopant activation p, found in Gd-doped EuO thin films [Mairoser et al., Phys. Rev. Lett. 105, 257206 (2010)], raised the important question of whether TC could be considerably enhanced by increasing p. Using a low-temperature growth method for depositing high-quality Lu-doped EuO films we attain high dopant activation (p) values of up to 67%, effectively more than doubling p as compared to adsorption-controlled growth of Lu- and Gd-doped EuO. Relating n, p, and lattice compression of La- and Lu-doped EuO films grown at different temperatures to the TC of these samples allows us to identify several different mechanisms influencing TC and causing an experimental maximum in TC. In addition, scanning transmission electron microscopy in combination with electron energy loss spectroscopy measurements on La-doped EuO indicate that extensive dopant clustering is one, but not the sole reason for dopant deactivation in rare-earth doped EuO films.
  • Item
    Inhomogeneous ferromagnetism mimics signatures of the topological Hall effect in SrRuO3 films
    (College Park, MD : APS, 2020) Kim, Gideok; Son, K.; Suyolcu, Y.E.; Miao, L.; Schreiber, N.J.; Nair, H.P.; Putzky, D.; Minola, M.; Christiani, G.; van Aken, P.A.; Shen, K.M.; Schlom, D.G.; Logvenov, G.; Keimer, B.
    Topological transport phenomena in magnetic materials are a major topic of current condensed matter research. One of the most widely studied phenomena is the topological Hall effect (THE), which is generated via spin-orbit interactions between conduction electrons and topological spin textures such as skyrmions. We report a comprehensive set of Hall effect and magnetization measurements on epitaxial films of the prototypical ferromagnetic metal SrRuO3 the magnetic and transport properties of which were systematically modulated by varying the concentration of Ru vacancies. We observe Hall effect anomalies that closely resemble signatures of the THE, but a quantitative analysis demonstrates that they result from inhomogeneities in the ferromagnetic magnetization caused by a nonrandom distribution of Ru vacancies. As such inhomogeneities are difficult to avoid and are rarely characterized independently, our results call into question the identification of topological spin textures in numerous prior transport studies of quantum materials, heterostructures, and devices. Firm conclusions regarding the presence of such textures must meet stringent conditions such as probes that couple directly to the noncollinear magnetization on the atomic scale.