Search Results

Now showing 1 - 10 of 27
  • Item
    Strong surface termination dependence of the electronic structure of polar superconductor LaFeAsO revealed by nano-ARPES
    ([London] : IOP, 2022) Jung, Sung Won; Rhodes, Luke C; Watson, Matthew D; Evtushinsky, Daniil V; Cacho, Cephise; Aswartham, Saicharan; Kappenberger, Rhea; Wurmehl, Sabine; Büchner, Bernd; Kim, Timur K
    The electronic structures of the iron-based superconductors have been intensively studied by using angle-resolved photoemission spectroscopy (ARPES). A considerable amount of research has been focused on the LaFeAsO family, showing the highest transition temperatures, where previous ARPES studies have found much larger Fermi surfaces than bulk theoretical calculations would predict. The discrepancy has been attributed to the presence of termination-dependent surface states. Here, using photoemission spectroscopy with a sub-micron focused beam spot (nano-ARPES) we have successfully measured the electronic structures of both the LaO and FeAs terminations in LaFeAsO. Our data reveal very different band dispersions and core-level spectra for different surface terminations, showing that previous macro-focus ARPES measurements were incomplete. Our results give direct evidence for the surface-driven electronic structure reconstruction in LaFeAsO, including formation of the termination-dependent surface states at the Fermi level. This experimental technique, which we have shown to be very powerful when applied to this prototypical compound, can now be used to study various materials with different surface terminations.
  • Item
    Basin stability and limit cycles in a conceptual model for climate tipping cascades
    ([London] : IOP, 2020) Wunderling, Nico; Gelbrecht, Maximilian; Winkelmann, Ricarda; Kurths, Jürgen; Donges, Jonathan F.
    Tipping elements in the climate system are large-scale subregions of the Earth that might possess threshold behavior under global warming with large potential impacts on human societies. Here, we study a subset of five tipping elements and their interactions in a conceptual and easily extendable framework: the Greenland Ice Sheets (GIS) and West Antarctic Ice Sheets, the Atlantic meridional overturning circulation (AMOC), the El–Niño Southern Oscillation and the Amazon rainforest. In this nonlinear and multistable system, we perform a basin stability analysis to detect its stable states and their associated Earth system resilience. By combining these two methodologies with a large-scale Monte Carlo approach, we are able to propagate the many uncertainties associated with the critical temperature thresholds and the interaction strengths of the tipping elements. Using this approach, we perform a system-wide and comprehensive robustness analysis with more than 3.5 billion ensemble members. Further, we investigate dynamic regimes where some of the states lose stability and oscillations appear using a newly developed basin bifurcation analysis methodology. Our results reveal that the state of four or five tipped elements has the largest basin volume for large levels of global warming beyond 4 °C above pre-industrial climate conditions, representing a highly undesired state where a majority of the tipping elements reside in the transitioned regime. For lower levels of warming, states including disintegrated ice sheets on west Antarctica and Greenland have higher basin volume than other state configurations. Therefore in our model, we find that the large ice sheets are of particular importance for Earth system resilience. We also detect the emergence of limit cycles for 0.6% of all ensemble members at rare parameter combinations. Such limit cycle oscillations mainly occur between the GIS and AMOC (86%), due to their negative feedback coupling. These limit cycles point to possibly dangerous internal modes of variability in the climate system that could have played a role in paleoclimatic dynamics such as those unfolding during the Pleistocene ice age cycles.
  • Item
    Femtosecond XUV–IR induced photodynamics in the methyl iodide cation
    ([London] : IOP, 2021) Murillo-Sánchez, Marta L.; Reitsma, Geert; Poullain, Sonia Marggi; Fernández-Milán, Pedro; González-Vázquez, Jesús; de Nalda, Rebeca; Martín, Fernando; Vrakking, Marc J. J.; Kornilov, Oleg; Bañares, Luis
    The time-resolved photodynamics of the methyl iodide cation (CH3I+) are investigated by means of femtosecond XUV-IR pump-probe spectroscopy. A time-delay-compensated XUV monochromator is employed to isolate a specific harmonic, the 9th harmonic of the fundamental 800 nm (13.95 eV, 88.89 nm), which is used as a pump pulse to prepare the cation in several electronic states. A time-delayed IR probe pulse is used to probe the dissociative dynamics on the first excited state potential energy surface. Photoelectrons and photofragment ions - and I+ - are detected by velocity map imaging. The experimental results are complemented with high level ab initio calculations for the potential energy curves of the electronic states of CH3I+ as well as with full dimension on-the-fly trajectory calculations on the first electronically excited state, considering the presence of the IR pulse. The and I+ pump-probe transients reflect the role of the IR pulse in controlling the photodynamics of CH3I+ in the state, mainly through the coupling to the ground state and to the excited state manifold. Oscillatory features are observed and attributed to a vibrational wave packet prepared in the state. The IR probe pulse induces a coupling between electronic states leading to a slow depletion of fragments after the cation is transferred to the ground states and an enhancement of I+ fragments by absorption of IR photons yielding dissociative photoionization. © 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  • Item
    Evolution mechanism of principal modes in climate dynamics
    ([London] : IOP, 2020) Zhang, Yongwen; Fan, Jingfang; Li, Xiaoteng; Liu, Wenqi; Chen, Xiaosong
    Eigen analysis has been a powerful tool to distinguish multiple processes into different simple principal modes in complex systems. For a non-equilibrium system, the principal modes corresponding to the non-equilibrium processes are usually evolving with time. Here, we apply the eigen analysis into the complex climate systems. In particular, based on the daily surface air temperature in the tropics (30? S–30? N, 0? E–360? E) between 1979-01-01 and 2016-12-31, we uncover that the strength of two dominated intra-annual principal modes represented by the eigenvalues significantly changes with the El Niño/southern oscillation from year to year. Specifically, according to the ‘regional correlation’ introduced for the first intra-annual principal mode, we find that a sharp positive peak of the correlation between the El Niño region and the northern (southern) hemisphere usually signals the beginning (end) of the El Niño. We discuss the underlying physical mechanism and suppose that the evolution of the first intra-annual principal mode is related to the meridional circulations; the evolution of the second intra-annual principal mode responds positively to the Walker circulation. Our framework presented here not only facilitates the understanding of climate systems but also can potentially be used to study the dynamical evolution of other natural or engineering complex systems. © 2020 The Author(s).
  • Item
    A recurrent plot based stochastic nonlinear ray propagation model for underwater signal propagation
    ([London] : IOP, 2020) Haiyang, Yao; Haiyan, Wang; Yong, Xu; Kurths, Juergen
    A stochastic nonlinear ray propagation model is proposed to carry out an exploration of the nonlinear ray theory in underwater signal propagation. The recurrence plot method is proposed to quantify the ray chaos and stochastics to optimize the model. Based on this method, the distribution function of the control parameter d is derived. Experiments and simulations indicate that this stochastic nonlinear ray propagation model provides a good explanation and description on the stochastic frequency shift in underwater signal propagation. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  • Item
    Corrigendum: Generation of high-quality GeV-class electron beams utilizing attosecond ionization injection (2021 New J. Phys. 23 043016)
    ([London] : IOP, 2021) Lécz, Zsolt; Andreev, Alexander; Kamperidis, C.; Hafz, Nasr
    Acceleration of electrons in laser-driven plasma wakefields has been extended up to the ∼8 GeV energy within a distance of tens of centimeters. However, in applications, requiring small energy spread within the electron bunch, only a small portion of the bunch can be used and often the low-energy electrons represent undesired background in the spectrum. We present a compact and tunable scheme providing clean and mono-energetic electron bunches with less than one percent energy spread and with central energy on the GeV level. It is a two-step process consisting of ionization injection with attosecond pulses and acceleration in a capillary plasma wave-guide. Semi-analytical theory and particle-in-cell simulations are used to accurately model the injection and acceleration steps.
  • Item
    Phase cycling of extreme ultraviolet pulse sequences generated in rare gases
    ([London] : IOP, 2020) Wituschek, Andreas; Kornilov, Oleg; Witting, Tobias; Maikowski, Laura; Stienkemeier, Frank; Vrakking, Marc J.J.; Bruder, Lukas
    The development of schemes for coherent nonlinear time-domain spectroscopy in the extreme-ultraviolet regime (XUV) has so far been impeded by experimental difficulties that arise at these short wavelengths. In this work we present a novel experimental approach, which facilitates the timing control and phase cycling of XUV pulse sequences produced by harmonic generation in rare gases. The method is demonstrated for the generation and high spectral resolution characterization of narrow-bandwidth harmonics (˜14 eV) in argon and krypton. Our technique simultaneously provides high phase stability and a pathway-selective detection scheme for nonlinear signals - both necessary prerequisites for all types of coherent nonlinear spectroscopy. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  • Item
    Neural partial differential equations for chaotic systems
    ([London] : IOP, 2021) Gelbrecht, Maximilian; Boers, Niklas; Kurths, Jürgen
    When predicting complex systems one typically relies on differential equation which can often be incomplete, missing unknown influences or higher order effects. By augmenting the equations with artificial neural networks we can compensate these deficiencies. We show that this can be used to predict paradigmatic, high-dimensional chaotic partial differential equations even when only short and incomplete datasets are available. The forecast horizon for these high dimensional systems is about an order of magnitude larger than the length of the training data.
  • Item
    Ensemble analysis of complex network properties—an MCMC approach
    ([London] : IOP, 2022) Pfeffer, Oskar; Molkenthin, Nora; Hellmann, Frank
    What do generic networks that have certain properties look like? We use relative canonical network ensembles as the ensembles that realize a property R while being as indistinguishable as possible from a background network ensemble. This allows us to study the most generic features of the networks giving rise to the property under investigation. To test the approach we apply it to study properties thought to characterize ‘small-world networks’. We consider two different defining properties, the ‘small-world-ness’ of Humphries and Gurney, as well as a geometric variant. Studying them in the context of Erdős-Rényi and Watts-Strogatz ensembles we find that all ensembles studied exhibit phase transitions to systems with large hubs and in some cases cliques. Such features are not present in common examples of small-world networks, indicating that these properties do not robustly capture the notion of small-world networks. We expect the overall approach to have wide applicability for understanding network properties of real world interest, such as optimal ride-sharing designs, the vulnerability of networks to cascades, the performance of communication topologies in coordinating fluctuation response or the ability of social distancing measures to suppress disease spreading.
  • Item
    Dielectric function decomposition by dipole interaction distribution: Application to triclinic K2Cr2O7
    ([London] : IOP, 2020) Sturm, C.; Höfer, S.; Hingerl, K.; Mayerhöfe, T.G.; Grundmann, M.
    Here we present a general approach for the description for the frequency dependent dielectric tensor coefficients for optically anisotropic materials. Based on symmetry arguments we show that the components of the dielectric tensor are in general not independent of each other. For each excitation there exists an eigensystem, where its contribution to the dielectric tensor can be described by a diagonal susceptibility tensor. From the orientation of the eigensystem and the relative magnitude of the tensor elements, the dipole interaction distribution in real space can be deduced. In the limiting cases, the oriented dipole approach as well as the tensor of isotropic and uniaxial materials are obtained. The application of this model is demonstrated exemplarily on triclinic K2Cr2O7 and the orientation and directional distribution of the corresponding dipole moments in real space are determined. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.