Search Results

Now showing 1 - 5 of 5
  • Item
    Intercalant-mediated Kitaev exchange in Ag3LiIr2O6
    (College Park, MD : APS, 2022) Yadav, Ravi; Reja, Sahinur; Ray, Rajyavardhan; van den Brink, Jeroen; Nishimoto, Satoshi; Yazyev, Oleg V.
    The recently synthesized Ag3LiIr2O6 has been proposed as a Kitaev magnet in proximity to the quantum spin liquid phase. We explore its microscopic Hamiltonian and magnetic ground state using many-body quantum chemistry methods and exact diagonalization techniques. Our calculations establish a dominant bond dependent ferromagnetic Kitaev exchange between Ir sites and find that the inclusion of Ag 4d orbitals in the configuration interaction calculations strikingly enhances the Kitaev exchange. Furthermore, using exact diagonalization of the nearest-neighbor fully anisotropic J−K−Γ Hamiltonian, we obtain the magnetic phase diagram as a function of further neighbor couplings. We find that the antiferromagnetic off-diagonal coupling stabilizes long range order, but the structure factor calculations suggest that the material is very close to the quantum spin liquid phase and the ordered state can easily collapse into a liquid by small perturbations such as structural distortion or bond disorder.
  • Item
    Magnetic warping in topological insulators
    (College Park, MD : APS, 2022) Naselli, Gabriele; Moghaddam, Ali G.; Di Napoli, Solange; Vildosola, Verónica; Fulga, Ion Cosma; van den Brink, Jeroen; Facio, Jorge I.
    We analyze the electronic structure of topological surface states in the family of magnetic topological insulators MnBi2nTe3n+1. We show that, at natural-cleavage surfaces, the Dirac cone warping changes its symmetry from hexagonal to trigonal at the magnetic ordering temperature. In particular, an energy splitting develops between the surface states of the same band index but opposite surface momenta upon formation of the long-range magnetic order. As a consequence, measurements of such energy splittings constitute a simple protocol to detect the magnetic ordering via the surface electronic structure, alternative to the detection of the surface magnetic gap. Interestingly, while the latter signals a nonzero surface magnetization, the trigonal warping predicted here is, in addition, sensitive to the direction of the surface magnetic flux. Our results may be particularly useful when the Dirac point is buried in the projection of the bulk states, caused by certain terminations of the crystal or in hole-doped systems, since in both situations the surface magnetic gap itself is not accessible in photoemission experiments.
  • Item
    Extended high-harmonic spectra through a cascade resonance in confined quantum systems
    (College Park, MD : APS, 2022) Zhang, Xiao; Zhu, Tao; Du, Hongchuan; Luo, Hong-Gang; van den Brink, Jeroen; Ray, Rajyavardhan
    The study of high-harmonic generation in confined quantum systems is vital to establishing a complete physical picture of harmonic generation from atoms and molecules to bulk solids. Based on a multilevel approach, we demonstrate how intraband resonances significantly influence the harmonic spectra via charge pumping to the higher subbands and thus redefine the cutoff laws. As a proof of principle, we consider the interaction of graphene nanoribbons, with zigzag as well as armchair terminations, and resonant fields polarized along the cross-ribbon direction. Here, this effect is particularly prominent due to many nearly equiseparated energy levels. In such a scenario, a cascade resonance effect can take place in high-harmonic generation when the field strength is above a critical threshold, which is completely different from the harmonic generation mechanism of atoms, molecules, and bulk solids. We further discuss the implications not only for other systems in a nanoribbon geometry, but also systems where only a few subbands (energy levels) meet this frequency-matching condition by considering a generalized multilevel Hamiltonian. Our study highlights that cascade resonance has a fundamentally distinct influence on the laws of harmonic generation, specifically the cutoff laws based on laser duration, field strength, and wavelength, thus unraveling additional insights in solid-state high-harmonic generation.
  • Item
    Observation of orbital order in the van der Waals material 1T−TiSe2
    (College Park, MD : APS, 2022) Peng, Yingying; Guo, Xuefei; Xiao, Qian; Li, Qizhi; Strempfer, Jörg; Choi, Yongseong; Yan, Dong; Luo, Huixia; Huang, Yuqing; Jia, Shuang; Janson, Oleg; Abbamonte, Peter; van den Brink, Jeroen; van Wezel, Jasper
    Besides magnetic and charge order, regular arrangements of orbital occupation constitute a fundamental order parameter of condensed matter physics. Even though orbital order is difficult to identify directly in experiments, its presence was firmly established in a number of strongly correlated, three-dimensional Mott insulators. Here, reporting resonant x-ray-scattering experiments on the layered van der Waals compound 1T-TiSe2, we establish that the known charge density wave in this weakly correlated, quasi-two-dimensional material corresponds to an orbital ordered phase. Our experimental scattering results are consistent with first-principles calculations that bring to the fore a generic mechanism of close interplay between charge redistribution, lattice displacements, and orbital order. It demonstrates the essential role that orbital degrees of freedom play in TiSe2, and their importance throughout the family of correlated van der Waals materials.
  • Item
    Horizon physics of quasi-one-dimensional tilted Weyl cones on a lattice
    (College Park, MD : APS, 2022) Könye, Viktor; Morice, Corentin; Chernyavsky, Dmitry; Moghaddam, Ali G.; van den Brink, Jeroen; van Wezel, Jasper
    To simulate the dynamics of massless Dirac fermions in curved space-times with one, two, and three spatial dimensions, we construct tight-binding Hamiltonians with spatially varying hoppings. These models represent tilted Weyl semimetals where the tilting varies with position, in a manner similar to the light cones near the horizon of a black hole. We illustrate the gravitational analogies in these models by numerically evaluating the propagation of wave packets on the lattice and then comparing them to the geodesics of the corresponding curved space-time. We also show that the motion of electrons in these spatially varying systems can be understood through the conservation of energy and the quasiconservation of quasimomentum. This picture is confirmed by calculations of the scattering matrix, which indicate an exponential suppression of any noncontinuous change in the quasimomentum. Finally, we show that horizons in the lattice models can be constructed also at finite energies using specially designed tilting profiles.