Search Results

Now showing 1 - 2 of 2
  • Item
    Curvature model for nanoparticle size effects on peptide fibril stability and molecular dynamics simulation data
    (Amsterdam [u.a.] : Elsevier, 2022) John, Torsten; Martin, Lisandra L.; Risselada, Herre Jelger; Abel, Bernd
    Nanostructured surfaces are widespread in nature and are being further developed in materials science. This makes them highly relevant for biomolecules, such as peptides. In this data article, we present a curvature model and molecular dynamics (MD) simulation data on the influence of nanoparticle size on the stability of amyloid peptide fibrils related to our research article entitled “Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation” (John et al., 2022) [1]. We provide the code to perform MD simulations in GROMACS 4.5.7 software of arbitrarily chosen biomolecule oligomers adsorbed on a curved surface of chosen nanoparticle size. We also provide the simulation parameters and data for peptide oligomers of Aß40, NNFGAIL, GNNQQNY, and VQIYVK. The data provided allows researchers to further analyze our MD simulations and the curvature model allows for a better understanding of oligomeric structures on surfaces.
  • Item
    Data on single pulse fs laser induced submicron bubbles in the subsurface region of soda-lime glass
    (Amsterdam [u.a.] : Elsevier, 2020) Lai, Shengying; Ehrhardt, Martin; Lorenz, Pierre; Lu, Jian; Han, Bing; Zimmer, Klaus
    Submicron bubble formation in the subsurface range of soda-lime glass is investigated. The bubbles are induced by single femtosecond laser pulse irradiation with the wavelength of λ = 775 nm, the pulse duration of tp = 150 fs and the laser beam diameter of ∼12 μm. The data shows the changes of the morphologies of the soda-lime glass after laser irradiation with different pulse energy. Moreover, the data shows the detail of the cross-section view of the bubble during the Focused ion beam (FIB) cutting. It is found that the bubbles can be formed in a rather narrow pulse energy range with the bubbles in the size of 300 nm ∼3 μm which is much smaller than the laser beam diameter. Data presented in this article are related to the research article “Submicron bubbles/voids formation in the subsurface region of soda-lime glass by single pulse fs laser-induced spallation” [1]. © 2020