Search Results

Now showing 1 - 3 of 3
  • Item
    Short-dated smile under rough volatility: asymptotics and numerics
    (London : Taylor & Francis, 2021) Friz, Peter K.; Gassiat, Paul; Pigato, Paolo
    In Friz et al. [Precise asymptotics for robust stochastic volatility models. Ann. Appl. Probab, 2021, 31(2), 896–940], we introduce a new methodology to analyze large classes of (classical and rough) stochastic volatility models, with special regard to short-time and small-noise formulae for option prices, using the framework [Bayer et al., A regularity structure for rough volatility. Math. Finance, 2020, 30(3), 782–832]. We investigate here the fine structure of this expansion in large deviations and moderate deviations regimes, together with consequences for implied volatility. We discuss computational aspects relevant for the practical application of these formulas. We specialize such expansions to prototypical rough volatility examples and discuss numerical evidence.
  • Item
    Singular paths spaces and applications
    (Philadelphia, Pa. : Taylor & Francis, 2021) Bellingeri, Carlo; Friz, Peter K.; Gerencsér, Máté
    Motivated by recent applications in rough volatility and regularity structures, notably the notion of singular modeled distribution, we study paths, rough paths and related objects with a quantified singularity at zero. In a pure path setting, this allows us to leverage on existing SLE Besov estimates to see that SLE traces takes values in a singular Hölder space, which quantifies a well-known boundary effect in the regime κ<1. We then consider the integration theory against singular rough paths and some extensions thereof. This gives a method to reconcile, from a regularity structure point of view, different singular kernels used to construct (fractional) rough volatility models and an effective reduction to the stationary case which is crucial to apply general renormalization methods.
  • Item
    Rough invariance principle for delayed regenerative processes
    ([Madralin] : EMIS ELibEMS, 2021) Orenshtein, Tal
    We derive an invariance principle for the lift to the rough path topology of stochastic processes with delayed regenerative increments under an optimal moment condition. An interesting feature of the result is the emergence of area anomaly, a correction term in the second level of the limiting rough path which is identified as the average stochastic area on a regeneration interval. A few applications include random walks in random environment and additive functionals of recurrent Markov chains. The result is formulated in the p-variation settings, where a rough path version of Donsker’s Theorem is available under the second moment condition. The key renewal theorem is applied to obtain an optimal moment condition.