Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Ellipticity of High-Order Harmonics Generated by Aligned Homonuclear Diatomic Molecules Exposed to an Orthogonal Two-Color Laser Field

2020, Habibović, Dino, Milošević, Dejan B.

We investigate emission rate and ellipticity of high-order harmonics generated exposing a homonuclear diatomic molecule, aligned in the laser-field polarization plane, to a strong orthogonally polarized two-color (OTC) laser field. The linearly polarized OTC-field components have frequencies r? and s?, where r and s are integers. Using the molecular strong-field approximation with dressed initial state and undressed final state, we calculate the harmonic emission rate and harmonic ellipticity for frequency ratios 1:2 and 1:3. The obtained quantities depend strongly on the relative phase between the laser-field components. We show that with the OTC field it is possible to generate elliptically polarized high-energy harmonics with high emission rate. To estimate the relative phase for which the emission rate is maximal we use the simple man’s model. In the harmonic spectra as a function of the molecular orientation there are two types of minima, one connected with the symmetry of the molecular orbital and the other one due to destructive interference between different contributions to the recombination matrix element, where we take into account that the electron can be ionized and recombine at the same or different atomic centers. We derive a condition for the interference minima. These minima are blurred in the OTC field except in the cases where the highest occupied molecular orbital is modeled using only s or only p orbitals in the linear combination of the atomic orbitals. This allows us to use the interference minima to assess which atomic orbitals are dominant in a particular molecular orbital. Finally, we show that the harmonic ellipticity, presented in false colors in the molecular-orientation angle vs. harmonic-order plane, can be large in particular regions of this plane. These regions are bounded by the curves determined by the condition that the harmonic ellipticity is approximately zero, which is determined by the minima of the T-matrix contributions parallel and perpendicular to the fundamental component of the OTC field. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Symmetries and Selection Rules of the Spectra of Photoelectrons and High-Order Harmonics Generated by Field-Driven Atoms and Molecules

2021, Habibović, Dino, Becker, Wilhelm, Milošević, Dejan B.

Using the strong-field approximation we systematically investigate the selection rules for high-order harmonic generation and the symmetry properties of the angle-resolved photoelectron spectra for various atomic and molecular targets exposed to one-component and two-component laser fields. These include bicircular fields and orthogonally polarized two-color fields. The selection rules are derived directly from the dynamical symmetries of the driving field. Alternatively, we demonstrate that they can be obtained using the conservation of the projection of the total angular momentum on the quantization axis. We discuss how the harmonic spectra of atomic targets depend on the type of the ground state or, for molecular targets, on the pertinent molecular orbital. In addition, we briefly discuss some properties of the high-order harmonic spectra generated by a few-cycle laser field. The symmetry properties of the angle-resolved photoelectron momentum distribution are also determined by the dynamical symmetry of the driving field. We consider the first two terms in a Born series expansion of the T matrix, which describe the direct and the rescattered electrons. Dynamical symmetries involving time translation generate rotational symmetries obeyed by both terms. However, those that involve time reversal generate reflection symmetries that are only observed by the direct electrons. Finally, we explain how the symmetry properties, imposed by the dynamical symmetry of the driving field, are altered for molecular targets.