Search Results

Now showing 1 - 6 of 6
  • Item
    Round robin comparison on quantitative nanometer scale magnetic field measurements by magnetic force microscopy
    (Amsterdam : Elsevier B.V., 2020) Hu, X.; Dai, G.; Sievers, S.; Fernández-Scarioni, A.; Corte-León, H.; Puttock, R.; Barton, C.; Kazakova, O.; Ulvr, M.; Klapetek, P.; Havlíček, M.; Nečas, D.; Tang, Y.; Neu, V.; Schumacher, H.W.
    Magnetic force microscopy (MFM) can be considered as a standard tool for nano-scale investigation of magnetic domain structures by probing the local stray magnetic field landscape of the measured sample. However, this generally provides only qualitative data. To quantify the stray magnetic fields, the MFM system must be calibrated. To that end, a transfer function (TF) approach was proposed, that, unlike point probe models, fully considers the finite extent of the MFM tip. However, albeit being comprehensive, the TF approach is not yet well established, mainly due to the ambiguities concerning the input parameters and the measurement procedure. Additionally, the calibration process represents an ill-posed problem which requires a regularization that introduces further parameters. In this paper we propose a guideline for quantitative stray field measurements by standard MFM tools in ambient conditions. All steps of the measurement and calibration procedure are detailed, including reference sample and sample under test (SUT) measurements and the data analysis. The suitability of the reference sample used in the present work for calibrated measurements on a sub-micron scale is discussed. A specific regularization approach based on a Pseudo-Wiener Filter is applied and combined with criteria for the numerical determination of a unique regularization parameter. To demonstrate the robustness of such a defined approach, a round robin comparison of magnetic field measurements was conducted by four laboratories. The guideline, the reference sample and the results of the round robin are discussed.
  • Item
    Machine learning-based calibration of the GOCE satellite platform magnetometers
    (Heidelberg : Springer, 2022) Styp-Rekowski, Kevin; Michaelis, Ingo; Stolle, Claudia; Baerenzung, Julien; Korte, Monika; Kao, Odej
    Additional datasets from space-based observations of the Earth’s magnetic field are of high value to space physics and geomagnetism. The use of platform magnetometers from non-dedicated satellites has recently successfully provided additional spatial and temporal coverage of the magnetic field. The Gravity and steady-state Ocean Circulation Explorer (GOCE) mission was launched in March 2009 and ended in November 2013 with the purpose of measuring the Earth’s gravity field. It also carried three platform magnetometers onboard. Careful calibration of the platform magnetometers can remove artificial disturbances caused by other satellite payload systems, improving the quality of the measurements. In this work, a machine learning-based approach is presented that uses neural networks to achieve a calibration that can incorporate a variety of collected information about the satellite system. The evaluation has shown that the approach is able to significantly reduce the calibration residual with a mean absolute residual of about 6.47nT for low- and mid-latitudes. In addition, the calibrated platform magnetometer data can be used for reconstructing the lithospheric field, due to the low altitude of the mission, and also observing other magnetic phenomena such as geomagnetic storms. Furthermore, the inclusion of the calibrated platform magnetometer data also allows improvement of geomagnetic field models. The calibrated dataset is published alongside this work. Graphical Abstract: [Figure not available: see fulltext.].
  • Item
    Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors
    (Washington, DC : Soc., 2021) Ruder, Alexander; Wright, Brandon; Feder, Rene; Kilic, Ufuk; Hilfiker, Matthew; Schubert, Eva; Herzinger, Craig M.; Schubert, Mathias
    We demonstrate calibration and operation of a Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors for polarization state generation and analysis. The mirrors contain highly spatially coherent nanostructure slanted columnar titanium thin films deposited onto optically thick titanium layers on quartz substrates. The first mirror acts as polarization state image generator and the second mirror acts as polarization state image detector. The instrument is calibrated using samples consisting of laterally homogeneous properties such as straight-through-air, a clear aperture linear polarizer, and a clear aperture linear retarder waveplate. Mueller matrix images are determined for spatially varying anisotropic samples consisting of a commercially available (Thorlabs) birefringent resolution target and a spatially patterned titanium slanted columnar thin film deposited onto a glass substrate. Calibration and operation are demonstrated at a single wavelength (530 nm) only, while, in principle, the instrument can operate regardless of wavelength. We refer to this imaging ellipsometry configuration as rotating-anisotropic-mirror-sample-rotating-anisotropic-mirror ellipsometry (RAM-S-RAM-E).
  • Item
    Assessment of shifted excitation Raman difference spectroscopy in highly fluorescent biological samples
    (Cambridge : Soc., 2021) Korinth, Florian; Shaik, Tanveer Ahmed; Popp, Jürgen; Krafft, Christoph
    Shifted excitation Raman difference spectroscopy (SERDS) can be used as an instrumental baseline correction technique to retrieve Raman bands in highly fluorescent samples. Genipin (GE) cross-linked equine pericardium (EP) was used as a model system since a blue pigment is formed upon cross-linking, which results in a strong fluorescent background in the Raman spectra. EP was cross-linked with 0.25% GE solution for 0.5 h, 2 h, 4 h, 6 h, 12 h, and 24 h, and compared with corresponding untreated EP. Raman spectra were collected with three different excitation wavelengths. For the assessment of the SERDS technique, the preprocessed SERDS spectra of two excitation wavelengths (784 nm-786 nm) were compared with the mathematical baseline-corrected Raman spectra at 785 nm excitation using extended multiplicative signal correction, rubberband, the sensitive nonlinear iterative peak and polynomial fitting algorithms. Whereas each baseline correction gave poor quality spectra beyond 6 h GE crosslinking with wave-like artefacts, the SERDS technique resulted in difference spectra, that gave superior reconstructed spectra with clear collagen and resonance enhanced GE pigment bands with lower standard deviation. Key for this progress was an advanced difference optimization approach that is described here. Furthermore, the results of the SERDS technique were independent of the intensity calibration because the system transfer response was compensated by calculating the difference spectrum. We conclude that this SERDS strategy can be transferred to Raman studies on biological and non-biological samples with a strong fluorescence background at 785 nm and also shorter excitation wavelengths which benefit from more intense scattering intensities and higher quantum efficiencies of CCD detectors. This journal is
  • Item
    Vectorial calibration of superconducting magnets with a quantum magnetic sensor
    (Melville, NY : American Inst. of Physics, 2020) Botsch, L.; Raatz, N.; Pezzagna, S.; Staacke, R.; John, R.; Abel, B.; Esquinazi, P. D.; Meijer, J.; Diziain, S.
    Cryogenic vector magnet systems make it possible to study the anisotropic magnetic properties of materials without mechanically rotating the sample but by electrically tilting and turning the magnetic field. Vector magnetic fields generated inside superconducting vector magnets are generally measured with three Hall sensors. These three probes must be calibrated over a range of temperatures, and the temperature-dependent calibrations cannot be easily carried out inside an already magnetized superconducting magnet because of remaining magnetic fields. A single magnetometer based on an ensemble of nitrogen vacancy (NV) centers in diamond is proposed to overcome these limitations. The quenching of the photoluminescence intensity emitted by NV centers can determine the field in the remanent state of the solenoids and allows an easy and fast canceling of the residual magnetic field. Once the field is reset to zero, the calibration of this magnetometer can be performed in situ by a single measurement of an optically detected magnetic resonance spectrum. Thereby, these magnetometers do not require any additional temperature-dependent calibrations outside the magnet and offer the possibility to measure vector magnetic fields in three dimensions with a single sensor. Its axial alignment is given by the crystal structure of the diamond host, which increases the accuracy of the field orientation measured with this sensor, compared to the classical arrangement of three Hall sensors. It is foreseeable that the magnetometer described here has the potential to be applied in various fields in the future, such as the characterization of ferromagnetic core solenoids or other magnetic arrangements. © 2020 Author(s).
  • Item
    Soil hydraulic interpretation of nuclear magnetic resonance measurements based on circular and triangular capillary models
    (Hoboken, NJ : Wiley, 2021) Costabel, Stephan; Hiller, Thomas
    Geophysical nuclear magnetic resonance (NMR) applications are used to estimate pore size distributions (PSDs) of rocks and sediments. This is commonly realized by empirical calibration using information about the surface-to-volume ratio of the material. Recent research has developed joint inversion concepts for NMR relaxation data that provides the PSD with a minimum of information. The application requires the NMR signal of a sample at saturation and at least one at partial saturation and at known suction. The new inversion concept physically simulates the desaturation process as part of the forward operator. The cross-section of the model capillaries in the underlying bundle can be either circular or triangular. Our study investigates the performance of the NMR joint inversion to predict water retention function (WRF) and capillary-based hydraulic conductivity (Kcap) as functions of saturation for different sands. The angularity of the pores has no significant impact on the estimated WRF but affects the Kcap estimation significantly. Our study shows that the WRF is predicted reliably for sand samples under fast diffusion conditions. The Kcap estimations are also plausible but tend to systematic overestimation, for which we identified the tortuosity being the main reason. Because NMR relaxation data generally do not provide tortuosity information, a plausible tortuosity model remains an issue of classical calibration. Further development of the approach will thus consider tortuosity measurements (e.g., by electrical resistivity measurements and/or gradient NMR) and will consider the relaxation mechanisms outside fast diffusion conditions to enhance its applicability for coarse soils.