Search Results

Now showing 1 - 9 of 9
  • Item
    Scaling relations of z ∼ 0.25–1.5 galaxies in various environments from the morpho-kinematics analysis of the MAGIC sample
    (Les Ulis : EDP Sciences, 2022) Mercier, W.; Epinat, B.; Contini, T.; Abril-Melgarejo, V.; Boogaard, L.; Brinchmann, J.; Finley, H.; Krajnović, D.; Michel-Dansac, L.; Ventou, E.; Bouché, N.; Dumoulin, J.; Pineda, J.C.B.
    Context. The evolution of galaxies is influenced by many physical processes, which may vary depending on their environment. Aims. We combine Hubble Space Telescope (HST) and Multi-Unit Spectroscopic Explorer (MUSE) data of galaxies at 0.25-1.5 to probe the impact of environment on the size-mass relation, the main sequence (MS) relation, and the Tully-Fisher relation (TFR). Methods. We perform a morpho-kinematics modelling of 593 [O-II] emitters in various environments in the COSMOS area from the MUSE-gAlaxy Groups In Cosmos survey. The HST F814W images are modelled with a bulge-disk decomposition to estimate their bulge-disk ratio, effective radius, and disk inclination. We use the [O-II]λλ3727, 3729 doublet to extract the galaxies ionised gas kinematics maps from the MUSE cubes, and we model those maps for a sample of 146 [O-II] emitters, including bulge and disk components constrained from morphology and a dark matter halo. Results. We find an offset of 0.03 dex (1 significant) on the size-mass relation zero point between the field and the large structure sub-samples, with a richness threshold of N=10 to separate between small and large structures, and of 0.06 dex (2) with N=20. Similarly, we find a 0.1 dex (2A) difference on the MS relation with N=10 and 0.15 dex (3) with N=20. These results suggest that galaxies in massive structures are smaller by 14% and have star formation rates reduced by a factor of 1.31.5 with respect to field galaxies at z 0.7. Finally, we do not find any impact of the environment on the TFR, except when using N=20 with an offset of 0.04 dex (1). We discard the effect of quenching for the largest structures, which would lead to an offset in the opposite direction. We find that, at z0.7, if quenching impacts the mass budget of galaxies in structures, these galaxies would have been affected quite recently and for roughly 0.7-+1.5 Gyr. This result holds when including the gas mass but vanishes once we include the asymmetric drift correction.
  • Item
    An atlas of MUSE observations towards twelve massive lensing clusters
    (Les Ulis : EDP Sciences, 2021) Richard, Johan; Claeyssens, Adélaïde; Lagattuta, David; Guaita, Lucia; Bauer, Franz Erik; Pello, Roser; Carton, David; Bacon, Roland; Soucail, Geneviève; Lyon, Gonzalo Prieto; Kneib, Jean-Paul; Mahler, Guillaume; Clément, Benjamin; Mercier, Wilfried; Variu, Andrei; Tamone, Amélie; Ebeling, Harald; Schmidt, Kasper B.; Nanayakkara, Themiya; Maseda, Michael; Weilbacher, Peter M.; Bouché, Nicolas; Bouwens, Rychard J.; Wisotzki, Lutz; de la Vieuville, Geoffroy; Martinez, Johany; Patrício, Vera
    Context. Spectroscopic surveys of massive galaxy clusters reveal the properties of faint background galaxies thanks to the magnification provided by strong gravitational lensing. Aims. We present a systematic analysis of integral-field-spectroscopy observations of 12 massive clusters, conducted with the Multi Unit Spectroscopic Explorer (MUSE). All data were taken under very good seeing conditions (~0".6) in effective exposure times between two and 15 h per pointing, for a total of 125 h. Our observations cover a total solid angle of ~23 arcmin2 in the direction of clusters, many of which were previously studied by the MAssive Clusters Survey, Frontier Fields (FFs), Grism Lens-Amplified Survey from Space and Cluster Lensing And Supernova survey with Hubble programmes. The achieved emission line detection limit at 5? for a point source varies between (0.77-1.5) × 10-18 erg s-1 cm-2 at 7000 Å. Methods. We present our developed strategy to reduce these observational data, detect continuum sources and line emitters in the datacubes, and determine their redshifts. We constructed robust mass models for each cluster to further confirm our redshift measurements using strong-lensing constraints, and identified a total of 312 strongly lensed sources producing 939 multiple images. Results. The final redshift catalogues contain more than 3300 robust redshifts, of which 40% are for cluster members and ∼30% are for lensed Lyman-α emitters. Fourteen percent of all sources are line emitters that are not seen in the available HST images, even at the depth of the FFs (∼29 AB). We find that the magnification distribution of the lensed sources in the high-magnification regime (μ = 2–25) follows the theoretical expectation of N(z) ∝ μ−2. The quality of this dataset, number of lensed sources, and number of strong-lensing constraints enables detailed studies of the physical properties of both the lensing cluster and the background galaxies. The full data products from this work, including the datacubes, catalogues, extracted spectra, ancillary images, and mass models, are made available to the community.
  • Item
    The MUSE Extremely Deep Field: The cosmic web in emission at high redshift
    (Les Ulis : EDP Sciences, 2021) Bacon, Roland; Mary, David; Garel, Thibault; Blaizot, Jeremy; Maseda, Michael; Schaye, Joop; Wisotzki, Lutz; Conseil, Simon; Brinchmann, Jarle; Leclercq, Floriane; Abril-Melgarejo, Valentina; Boogaard, Leindert; Bouché, Nicolas; Contini, Thierry; Feltre, Anna; Guiderdoni, Bruno; Herenz, Christian; Kollatschny, Wolfram; Kusakabe, Haruka; Matthee, Jorryt; Michel-Dansac, Léo; Nanayakkara, Themiya; Richard, Johan; Roth, Martin; Schmidt, Kasper B.; Steinmetz, Matthias; Tresse, Laurence; Urrutia, Tanya; Verhamme, Anne; Weilbacher, Peter M.; Zabl, Johannes; Zoutendijk, Sebastiaan L.
    We report the discovery of diffuse extended Lyα emission from redshift 3.1 to 4.5, tracing cosmic web filaments on scales of 2.5-4 cMpc. These structures have been observed in overdensities of Lyα emitters in the MUSE Extremely Deep Field, a 140 h deep MUSE observation located in the Hubble Ultra-Deep Field. Among the 22 overdense regions identified, five are likely to harbor very extended Lyα emission at high significance with an average surface brightness of 5  ×  10-20 erg s-1 cm-2 arcsec-2. Remarkably, 70% of the total Lyα luminosity from these filaments comes from beyond the circumgalactic medium of any identified Lyα emitter. Fluorescent Lyα emission powered by the cosmic UV background can only account for less than 34% of this emission at z  ≈  3 and for not more than 10% at higher redshift. We find that the bulk of this diffuse emission can be reproduced by the unresolved Lyα emission of a large population of ultra low-luminosity Lyα emitters (< 1040 erg s-1), provided that the faint end of the Lyα luminosity function is steep (α ⪅ -1.8), it extends down to luminosities lower than 1038 -  1037 erg s-1, and the clustering of these Lyα emitters is significant (filling factor < 1/6). If these Lyα emitters are powered by star formation, then this implies their luminosity function needs to extend down to star formation rates < 10-4M yr-1. These observations provide the first detection of the cosmic web in Lyα emission in typical filamentary environments and the first observational clue indicating the existence of a large population of ultra low-luminosity Lyα emitters at high redshift. © R. Bacon et al. 2021.
  • Item
    The tully-fisher relation in dense groups at z ∼ 0.7 in the MAGIC survey
    (Les Ulis : EDP Sciences, 2021) Abril-Melgarejo, Valentina; Epinat, Benoît; Mercier, Wilfried; Contini, Thierry; Boogaard, Leindert A.; Brinchmann, Jarle; Finley, Hayley; Michel-Dansac, Léo; Ventou, Emmy; Amram, Philipe; Krajnović, Davor; Mahler, Guillaume; Pineda, Juan C.B.; Richard, Johan
    Context. Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and consequently reducing their star-forming capacity earlier than their isolated counterparts. Aims. The aim of our project is to get new insights into the role of environment in the stellar and baryonic content of galaxies using a kinematic approach, through the study of the Tully-Fisher relation (TFR). Methods. We study a sample of galaxies in eight groups, over-dense by a factor larger than 25 with respect to the average projected density, spanning a redshift range of 0.5 < z < 0.8 and located in ten pointings of the MAGIC MUSE Guaranteed Time Observations program. We perform a morpho-kinematics analysis of this sample and set up a selection based on galaxy size, [O » II]λλ3727,3729 emission line doublet signal-to-noise ratio, bulge-to-disk ratio, and nuclear activity to construct a robust kinematic sample of 67 star-forming galaxies. Results. We show that this selection considerably reduces the number of outliers in the TFR, which are predominantly dispersion-dominated galaxies. Similar to other studies, we find that including the velocity dispersion in the velocity budget mainly affects galaxies with low rotation velocities, reduces the scatter in the relation, increases its slope, and decreases its zero-point. Including gas masses is more significant for low-mass galaxies due to a larger gas fraction, and thus decreases the slope and increases the zero-point of the relation. Our results suggest a significant offset of the TFR zero-point between galaxies in low- and high-density environments, regardless of the kinematics estimator used. This can be interpreted as a decrease in either stellar mass by ∼0.05 - 0.3 dex or an increase in rotation velocity by ∼0.02 - 0.06 dex for galaxies in groups, depending on the samples used for comparison. We also studied the stellar and baryon mass fractions within stellar disks and found they both increase with stellar mass, the trend being more pronounced for the stellar component alone. These fractions do not exceed 50%. We show that this evolution of the TFR is consistent either with a decrease in star formation or with a contraction of the mass distribution due to the environment. These two effects probably act together, with their relative contribution depending on the mass regime. © V. Abril-Melgarejo et al. 2021.
  • Item
    The MUSE Hubble Ultra Deep Field surveys: Data release II
    (Les Ulis : EDP Sciences, 2023) Bacon, Roland; Brinchmann, Jarle; Conseil, Simon; Maseda, Michael; Nanayakkara, Themiya; Wendt, Martin; Bacher, Raphael; Mary, David; Weilbacher, Peter M.; Krajnović, Davor; Boogaard, Leindert; Bouché, Nicolas; Contini, Thierry; Epinat, Benoît; Feltre, Anna; Guo, Yucheng; Herenz, Christian; Kollatschny, Wolfram; Kusakabe, Haruka; Leclercq, Floriane; Michel-Dansac, Léo; Pello, Roser; Richard, Johan; Roth, Martin; Salvignol, Gregory; Schaye, Joop; Steinmetz, Matthias; Tresse, Laurence; Urrutia, Tanya; Verhamme, Anne; Vitte, Eloise; Wisotzki, Lutz; Zoutendijk, Sebastiaan L.
    We present the second data release of the MUSE Hubble Ultra-Deep Field surveys, which includes the deepest spectroscopic survey ever performed. The MUSE data, with their 3D content, amazing depth, wide spectral range, and excellent spatial and medium spectral resolution, are rich in information. Their location in the Hubble ultra-deep field area, which benefits from an exquisite collection of ancillary panchromatic information, is a major asset. This update of the first release incorporates a new 141-h adaptive-optics-assisted MUSE eXtremely Deep Field (MXDF; 1 arcmin diameter field of view) in addition to the reprocessed 10-h mosaic (3 × 3 arcmin2) and the single 31-h deep field (1 × 1 arcmin2). All three data sets were processed and analyzed homogeneously using advanced data reduction and analysis methods. The 3σ point-source flux limit of an unresolved emission line reaches 3.1 × 10-19 and 6.3 × 10-20 erg s-1 cm-2 at 10-and 141-h depths, respectively. We have securely identified and measured the redshift of 2221 sources, an increase of 41% compared to the first release. With the exception of eight stars, the collected sample consists of 25 nearby galaxies (z < 0.25), 677 [O II] emitters (z = 0.25-1.5), 201 galaxies in the MUSE redshift desert range (z = 1.5-2.8), and 1308 Lyα emitters (z = 2.8-6.7). This represents an order of magnitude more redshifts than the collection of all spectroscopic redshifts obtained before MUSE in the Hubble ultra-deep field area (i.e., 2221 versus 292). At high redshift (z > 3), the difference is even more striking, with a factor of 65 increase (1308 versus 20). We compared the measured redshifts against three published photometric redshift catalogs and find the photo-z accuracy to be lower than the constraints provided by photo-z fitting codes. Eighty percent of the galaxies in our final catalog have an HST counterpart. These galaxies are on average faint, with a median AB F775W magnitude of 25.7 and 28.7 for the [O II] and Lyα emitters, respectively. Fits of their spectral energy distribution show that these galaxies tend to be low-mass star-forming galaxies, with a median stellar mass of 6.2 × 108 M· and a median star-formation rate of 0.4 M· yr-1. We measured the completeness of our catalog with respect to HST and found that, in the deepest 141-h area, 50% completeness is achieved for an AB magnitude of 27.6 and 28.7 (F775W) at z = 0.8-1.6 and z = 3.2-4.5, respectively. Twenty percent of our catalog, or 424 galaxies, have no HST counterpart. The vast majority of these new sources are high equivalent-width z > 2.8 Lyα emitters that are detected by MUSE thanks to their bright and asymmetric broad Lyα line. We release advanced data products, specific software, and a web interface to select and download data sets.
  • Item
    First constraints on the AGN X-ray luminosity function at z 6 from an eROSITA-detected quasar
    (Les Ulis : EDP Sciences, 2021) Wolf, J.; Nandra, K.; Salvato, M.; Liu, T.; Buchner, J.; Brusa, M.; Hoang, D. N.; Moss, V.; Arcodia, R.; Brüggen, M.; Comparat, J.; de Gasperin, F.; Georgakakis, A.; Hotan, A.; Lamer, G.; Merloni, A.; Rau, A.; Rottgering, H. J. A.; Shimwell, T. W.; Urrutia, T.; Whiting, M.; Williams, W. L.
    Context. High-redshift quasars signpost the early accretion history of the Universe. The penetrating nature of X-rays enables a less absorption-biased census of the population of these luminous and persistent sources compared to optical/near-infrared colour selection. The ongoing SRG/eROSITA X-ray all-sky survey offers a unique opportunity to uncover the bright end of the high-z quasar population and probe new regions of colour parameter space. Aims. We searched for high-z quasars within the X-ray source population detected in the contiguous 140 deg2 field observed by eROSITA during the performance verification phase. With the purpose of demonstrating the unique survey science capabilities of eROSITA, this field was observed at the depth of the final all-sky survey. The blind X-ray selection of high-redshift sources in a large contiguous, near-uniform survey with a well-understood selection function can be directly translated into constraints on the X-ray luminosity function (XLF), which encodes the luminosity-dependent evolution of accretion through cosmic time. Methods. We collected the available spectroscopic information in the eFEDS field, including the sample of all currently known optically selected z > 5.5 quasars and cross-matched secure Legacy DR8 counterparts of eROSITA-detected X-ray point-like sources with this spectroscopic sample. Results. We report the X-ray detection of eFEDSU J083644.0+005459, an eROSITA source securely matched to the well-known quasar SDSS J083643.85+005453.3 (z = 5.81). The soft X-ray flux of the source derived from eROSITA is consistent with previous Chandra observations. The detection of SDSS J083643.85+005453.3 allows us to place the first constraints on the XLF at z > 5.5 based on a secure spectroscopic redshift. Compared to extrapolations from lower-redshift observations, this favours a relatively flat slope for the XLF at z 6 beyond L∗, the knee in the luminosity function. In addition, we report the detection of the quasar with LOFAR at 145 MHz and ASKAP at 888 MHz. The reported flux densities confirm a spectral flattening at lower frequencies in the emission of the radio core, indicating that SDSS J083643.85+005453.3 could be a (sub-) gigahertz peaked spectrum source. The inferred spectral shape and the parsec-scale radio morphology of SDSS J083643.85+005453.3 indicate that it is in an early stage of its evolution into a large-scale radio source or confined in a dense environment. We find no indications for a strong jet contribution to the X-ray emission of the quasar, which is therefore likely to be linked to accretion processes. Conclusions. Our results indicate that the population of X-ray luminous AGNs at high redshift may be larger than previously thought. From our XLF constraints, we make the conservative prediction that eROSITA will detect 90 X-ray luminous AGNs at redshifts 5.7 < z < 6.4 in the full-sky survey (De+RU). While subject to different jet physics, both high-redshift quasars detected by eROSITA so far are radio-loud; a hint at the great potential of combined X-ray and radio surveys for the search of luminous high-redshift quasars.
  • Item
    Astraeus I: The interplay between galaxy formation and reionization
    (Oxford : Oxford Univ. Press, 2021) Hutter, Anne; Dayal, Pratika; Yepes, Gustavo; Gottlöber, Stefan; Legrand, Laurent; Ucci, Graziano
    We introduce a new self-consistent model of galaxy evolution and reionization, ASTRAEUS (seminumerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr simUlationS), which couples a state-of-the-art N-body simulation with the semi-analytical galaxy evolution DELPHI and the seminumerical reionization scheme CIFOG. ASTRAEUS includes all the key processes of galaxy formation and evolution (including accretion, mergers, supernova, and radiative feedback) and follows the time and spatial evolution of the ionized regions in the intergalactic medium (IGM). Importantly, it explores different radiative feedback models that cover the physically plausible parameter space, ranging from a weak and delayed to a strong and immediate reduction of gas mass available for star formation. From our simulation suite that covers the different radiative feedback prescriptions and ionization topologies, we find that radiative feedback continuously reduces star formation in galaxies with Mh ≲ 109.5 M☉ upon local reionization; larger mass haloes are unaffected even for the strongest and immediate radiative feedback cases during reionization. For this reason, the ionization topologies of different radiative feedback scenarios differ only on scales smaller than 1–2 comoving Mpc, and significant deviations are found only when physical parameters (e.g. the escape fraction of ionizing photons) are altered based on galactic properties. Finally, we find that observables (the ultraviolet luminosity function, stellar mass function, reionization histories and ionization topologies) are hardly affected by the choice of the used stellar population synthesis models that model either single stars or binaries.
  • Item
    Elevated ionizing photon production efficiency in faint high-equivalent-width Lyman-α emitters
    (Oxford : Oxford Univ. Press, 2020) Maseda, Michael V; Bacon, Roland; Lam, Daniel; Matthee, Jorryt; Brinchmann, Jarle; Schaye, Joop; Labbe, Ivo; Schmidt, Kasper B; Boogaard, Leindert; Bouwens, Rychard; Cantalupo, Sebastiano; Franx, Marijn; Hashimoto, Takuya; Inami, Hanae; Kusakabe, Haruka; Mahler, Guillaume; Nanayakkara, Themiya; Richard, Johan; Wisotzki, Lutz
    While low-luminosity galaxies dominate number counts at all redshifts, their contribution to cosmic reionization is poorly understood due to a lack of knowledge of their physical properties. We isolate a sample of 35 z ≈ 4–5 continuum-faint Lyman-α emitters from deep VLT/MUSE spectroscopy and directly measure their H α emission using stacked Spitzer/IRAC Ch. 1 photometry. Based on Hubble Space Telescope imaging, we determine that the average UV continuum magnitude is fainter than −16 (≈ 0.01 L*), implying a median Lyman-α equivalent width of 259 Å. By combining the H α measurement with the UV magnitude, we determine the ionizing photon production efficiency, ξion, a first for such faint galaxies. The measurement of log10 (ξion [Hz erg−1]) = 26.28 (+−002840) is in excess of literature measurements of both continuum- and emission line-selected samples, implying a more efficient production of ionizing photons in these lower luminosity, Lyman-α-selected systems. We conclude that this elevated efficiency can be explained by stellar populations with metallicities between 4 × 10−4 and 0.008, with light-weighted ages less than 3 Myr.
  • Item
    Astraeus - III. The environment and physical properties of reionization sources
    (Oxford : Oxford Univ. Press, 2021) Hutter, Anne; Dayal, Pratika; Legrand, Laurent; Gottlöber, Stefan; Yepes, Gustavo
    In this work, we use the ASTRAEUS (seminumerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in Nbody dArk mattEr simUlationS) framework that couples galaxy formation and reionization in the first billion years. Exploring a number of models for reionization feedback and the escape fraction of ionizing radiation from the galactic environment (fesc), we quantify how the contribution of star-forming galaxies (with halo masses Mh > 108.2 M☉) to reionization depends on the radiative feedback model, fesc, and the environmental overdensity. Our key findings are: (i) for constant fesc models, intermediate-mass galaxies (with halo masses of Mh ≃ 109−11 M☉ and absolute UV magnitudes of MUV ∼ −15 to −20) in intermediate-density regions (with overdensity log10(1 + δ) ∼ 0−0.8 on a 2 comoving Mpc spatial scale) drive reionization; (ii) scenarios where fesc increases with decreasing halo mass shift, the galaxy population driving reionization to lower mass galaxies (Mh ≲ 109.5 M☉) with lower luminosities (MUV ≳ −16) and overdensities [log10(1 + δ) ∼ 0−0.5 on a 2 comoving Mpc spatial scale]; (iii) reionization imprints its topology on the ionizing emissivity of low-mass galaxies (Mh ≲ 109 M☉] through radiative feedback. Low-mass galaxies experience a stronger suppression of star formation by radiative feedback and show lower ionizing emissivities in overdense regions; (iv) a change in fesc with galaxy properties has the largest impact on the sources of reionization and their detectability, with the radiative feedback strength and environmental overdensity playing a sub-dominant role; (v) James Webb Space Telescope-surveys (with a limiting magnitude of MUV = −16) will be able to detect the galaxies providing ∼60−70 per cent (∼10 per cent) of reionization photons at z = 7 for constant fesc models (scenarios where fesc increases with decreasing halo mass).