Search Results

Now showing 1 - 2 of 2
  • Item
    Formation of intermittent covalent bonds at high contact pressure limits superlow friction on epitaxial graphene
    (College Park, MD : APS, 2023) Szczefanowicz, Bartosz; Kuwahara, Takuya; Filleter, Tobin; Klemenz, Andreas; Mayrhofer, Leonhard; Bennewitz, Roland; Moseler, Michael
    Epitaxial graphene on SiC(0001) exhibits superlow friction due to its weak out-of-plane interactions. Friction-force microscopy with silicon tips shows an abrupt increase of friction by one order of magnitude above a threshold normal force. Density-functional tight-binding simulations suggest that this wearless high-friction regime involves an intermittent sp3 rehybridization of graphene at contact pressure exceeding 10 GPa. The simultaneous formation of covalent bonds with the tip's silica surface and the underlying SiC interface layer establishes a third mechanism limiting the superlow friction on epitaxial graphene, in addition to dissipation in elastic instabilities and in wear processes.
  • Item
    Extended high-harmonic spectra through a cascade resonance in confined quantum systems
    (College Park, MD : APS, 2022) Zhang, Xiao; Zhu, Tao; Du, Hongchuan; Luo, Hong-Gang; van den Brink, Jeroen; Ray, Rajyavardhan
    The study of high-harmonic generation in confined quantum systems is vital to establishing a complete physical picture of harmonic generation from atoms and molecules to bulk solids. Based on a multilevel approach, we demonstrate how intraband resonances significantly influence the harmonic spectra via charge pumping to the higher subbands and thus redefine the cutoff laws. As a proof of principle, we consider the interaction of graphene nanoribbons, with zigzag as well as armchair terminations, and resonant fields polarized along the cross-ribbon direction. Here, this effect is particularly prominent due to many nearly equiseparated energy levels. In such a scenario, a cascade resonance effect can take place in high-harmonic generation when the field strength is above a critical threshold, which is completely different from the harmonic generation mechanism of atoms, molecules, and bulk solids. We further discuss the implications not only for other systems in a nanoribbon geometry, but also systems where only a few subbands (energy levels) meet this frequency-matching condition by considering a generalized multilevel Hamiltonian. Our study highlights that cascade resonance has a fundamentally distinct influence on the laws of harmonic generation, specifically the cutoff laws based on laser duration, field strength, and wavelength, thus unraveling additional insights in solid-state high-harmonic generation.