Search Results

Now showing 1 - 4 of 4
  • Item
    Robust transverse structures in rescattered photoelectron wavepackets and their consequences
    (Bristol : IOP Publ., 2020) Bredtmann, T.; Patchkovskii, S.
    Initial-state symmetry has been under-appreciated in strong-field spectroscopies, where laser fields dominate the dynamics. We demonstrate numerically that the transverse photoelectron phase structure, arising from the initial-state symmetry, is robust in strong-field rescattering, and has pronounced effects on strong-field photoelectron spectra. Interpretation of rescattering experiments need to take these symmetry effects into account. In turn, robust transverse photoelectron phase structures may enable attosecond sub-Ångström super-resolution imaging with structured electron beams.
  • Item
    General Time-Dependent Configuration-Interaction Singles II: The Atomic Case
    (Woodbury, NY : Inst., 2022-10-10) Carlström, Stefanos; Bertolino, Mattias; Dahlström, Jan Marcus; Patchkovskii, Serguei
    We present a specialization of the grid-based implementation of the time-dependent configuration-interaction singles described in the preceding paper [S. Carlström et al., preceding paper, Phys. Rev. A 106, 043104 (2022)]. to the case of spherical symmetry. We describe the intricate time propagator in detail and conclude with a few example calculations. Among these, of note are high-resolution photoelectron spectra in the vicinity of the Fano resonances in photoionization of neon and spin-polarized photoelectrons from xenon, in agreement with recent experiments.
  • Item
    Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions
    (Cambridge : RSC Publ., 2021) Malerz, Sebastian; Trinter, Florian; Hergenhahn, Uwe; Ghrist, Aaron; Ali, Hebatallah; Nicolas, Christophe; Saak, Clara-Magdalena; Richter, Clemens; Hartweg, Sebastian; Nahon, Laurent; Lee, Chin; Goy, Claudia; Neumark, Daniel M; Meijer, Gerard; Wilkinson, Iain; Winter, Bernd; Thürmer, Stephan
    We report on the effects of electron collision and indirect ionization processes, occurring at photoexcitation and electron kinetic energies well below 30 eV, on the photoemission spectra of liquid water. We show that the nascent photoelectron spectrum and, hence, the inferred electron binding energy can only be accurately determined if electron energies are large enough that cross sections for quasi-elastic scattering processes, such as vibrational excitation, are negligible. Otherwise, quasi-elastic scattering leads to strong, down-to-few-meV kinetic energy scattering losses from the direct photoelectron features, which manifest in severely distorted intrinsic photoelectron peak shapes. The associated cross-over point from predominant (known) electronically inelastic to quasi-elastic scattering seems to arise at surprisingly large electron kinetic energies, of approximately 10–14 eV. Concomitantly, we present evidence for the onset of indirect, autoionization phenomena (occurring via superexcited states) within a few eV of the primary and secondary ionization thresholds. These processes are inferred to compete with the direct ionization channels and primarily produce low-energy photoelectrons at photon and electron impact excitation energies below ∼15 eV. Our results highlight that vibrational inelastic electron scattering processes and neutral photoexcitation and autoionization channels become increasingly important when photon and electron kinetic energies are decreased towards the ionization threshold. Correspondingly, we show that for neat water and aqueous solutions, great care must be taken when quantitatively analyzing photoelectron spectra measured too close to the ionization threshold. Such care is essential for the accurate determination of solvent and solute ionization energies as well as photoelectron branching ratios and peak magnitudes.
  • Item
    Pinning of the Fermi Level in CuFeO2 by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting
    (Weinheim : Wiley-VCH Verlag, 2020) Hermans Y.; Klein A.; Sarker H.P.; Huda M.N.; Junge H.; Toupance T.; Jaegermann W.
    CuFeO2 is recognized as a potential photocathode for photo(electro)chemical water splitting. However, photocurrents with CuFeO2-based systems are rather low so far. In order to optimize charge carrier separation and water reduction kinetics, defined CuFeO2/Pt, CuFeO2/Ag, and CuFeO2/NiOx(OH)y heterostructures are made in this work through a photodeposition procedure based on a 2H CuFeO2 hexagonal nanoplatelet shaped powder. However, water splitting performance tests in a closed batch photoreactor show that these heterostructured powders exhibit limited water reduction efficiencies. To test whether Fermi level pinning intrinsically limits the water reduction capacity of CuFeO2, the Fermi level tunability in CuFeO2 is evaluated by creating CuFeO2/ITO and CuFeO2/H2O interfaces and analyzing the electronic and chemical properties of the interfaces through photoelectron spectroscopy. The results indicate that Fermi level pinning at the Fe3+/Fe2+ electron polaron formation level may intrinsically prohibit CuFeO2 from acquiring enough photovoltage to reach the water reduction potential. This result is complemented with density functional theory calculations as well. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim