Search Results

Now showing 1 - 7 of 7
  • Item
    KMHK 1762: Another star cluster in the Large Magellanic Cloud age gap
    (Les Ulis : EDP Sciences, 2022) Gatto, M.; Ripepi, V.; Bellazzini, M.; Tosi, M.; Tortora, C.; Cignoni, M.; Dall’Ora, M.; Cioni, M.-R.L.; Cusano, F.; Longo, G.; Marconi, M.; Musella, I.; Schipani, P.; Spavone, M.
    Context. The star cluster (SC) age distribution of the Large Magellanic Cloud (LMC) exhibits a gap from ∼4 to 10 Gyr ago, with an almost total absence of SCs. Within this age gap, only two confirmed SCs have been identified hitherto. Nonetheless, the star field counterpart does not show the same characteristics, making the LMC a peculiar galaxy where the star formation history and cluster formation history appear to differ significantly. Aims. We re-analysed the colour-magnitude diagram (CMD) of the KMHK 1762 SC by using the deep optical photometry provided by the ‘Yes, Magellanic Clouds Again’ survey, so as to robustly assess its age. Methods. First, we partially removed foreground and/or field stars by means of parallaxes and proper motions obtained from the Gaia Early Data Release 3. Then, we applied the Automated Stellar Cluster Analysis package to the cleaned photometric catalogue to identify the isochrone that best matches the CMD of KMHK 1762. Results. The estimated age of KMHK 1762 is log(t) = 9.74 ± 0.15 dex (∼5.5 Gyr), which is more than 2 Gyr older than the previous estimation which was obtained with shallower photometry. This value makes KMHK 1762 the third confirmed age-gap SC of the LMC. Conclusions. The physical existence of a quiescent period of the LMC SC formation is questioned. We suggest it can be the result of an observational bias, originating from the combination of shallow photometry and limited investigation of the LMC periphery.
  • Item
    Optical inter-site spin transfer probed by energy and spin-resolved transient absorption spectroscopy
    ([London] : Nature Publishing Group UK, 2020) Willems, Felix; von Korff Schmising, Clemens; Strüber, Christian; Schick, Daniel; Engel, Dieter W.; Dewhurst, J. K.; Elliott, Peter; Sharma, Sangeeta; Eisebitt, Stefan
    Optically driven spin transport is the fastest and most efficient process to manipulate macroscopic magnetization as it does not rely on secondary mechanisms to dissipate angular momentum. In the present work, we show that such an optical inter-site spin transfer (OISTR) from Pt to Co emerges as a dominant mechanism governing the ultrafast magnetization dynamics of a CoPt alloy. To demonstrate this, we perform a joint theoretical and experimental investigation to determine the transient changes of the helicity dependent absorption in the extreme ultraviolet spectral range. We show that the helicity dependent absorption is directly related to changes of the transient spin-split density of states, allowing us to link the origin of OISTR to the available minority states above the Fermi level. This makes OISTR a general phenomenon in optical manipulation of multi-component magnetic systems.
  • Item
    Unraveling the nature of spin excitations disentangled from charge contributions in a doped cuprate superconductor
    ([London] : Nature Publishing Group, 2022) Zhang, Wenliang; Agrapidis, Cliò Efthimia; Tseng, Yi; Asmara, Teguh Citra; Paris, Eugenio; Strocov, Vladimir N.; Giannini, Enrico; Nishimoto, Satoshi; Wohlfeld, Krzysztof; Schmitt, Thorsten
    The nature of the spin excitations in superconducting cuprates is a key question toward a unified understanding of the cuprate physics from long-range antiferromagnetism to superconductivity. The intense spin excitations up to the over-doped regime revealed by resonant inelastic X-ray scattering bring new insights as well as questions like how to understand their persistence or their relation to the collective excitations in ordered magnets (magnons). Here, we study the evolution of the spin excitations upon hole-doping the superconducting cuprate Bi2Sr2CaCu2O8+δ by disentangling the spin from the charge excitations in the experimental cross section. We compare our experimental results against density matrix renormalization group calculations for a t-J-like model on a square lattice. Our results unambiguously confirm the persistence of the spin excitations, which are closely connected to the persistence of short-range magnetic correlations up to high doping. This suggests that the spin excitations in hole-doped cuprates are related to magnons—albeit short-ranged.
  • Item
    Diffraction imaging of light induced dynamics in xenon-doped helium nanodroplets
    ([London] : IOP, 2022-11-30) Langbehn, B.; Ovcharenko, Y.; Clark, A.; Coreno, M.; Cucini, R.; Demidovich, A.; Drabbels, M.; Finetti, P.; Di Fraia, M.; Giannessi, L.; Grazioli, C.; Iablonskyi, D.; LaForge, A.C.; Nishiyama, T.; Oliver Álvarez de Lara, V.; Peltz, C.; Piseri, P.; Plekan, O.; Sander, K.; Ueda, K.; Fennel, T.; Prince, K.C.; Stienkemeier, F.; Callegari, C.; Möller, T.; Rupp, D.
    We explore the light induced dynamics in superfluid helium nanodroplets with wide-angle scattering in a pump–probe measurement scheme. The droplets are doped with xenon atoms to facilitate the ignition of a nanoplasma through irradiation with near-infrared laser pulses. After a variable time delay of up to 800 ps, we image the subsequent dynamics using intense extreme ultraviolet pulses from the FERMI free-electron laser. The recorded scattering images exhibit complex intensity fluctuations that are categorized based on their characteristic features. Systematic simulations of wide-angle diffraction patterns are performed, which can qualitatively explain the observed features by employing model shapes with both randomly distributed as well as structured, symmetric distortions. This points to a connection between the dynamics and the positions of the dopants in the droplets. In particular, the structured fluctuations might be governed by an underlying array of quantized vortices in the superfluid droplet as has been observed in previous small-angle diffraction experiments. Our results provide a basis for further investigations of dopant–droplet interactions and associated heating mechanisms.
  • Item
    Topological transitions in ac/dc-driven superconductor nanotubes
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Fomin, Vladimir M.; Rezaev, Roman O.; Dobrovolskiy, Oleksandr V.
    Extending of nanostructures into the third dimension has become a major research avenue in condensed-matter physics, because of geometry- and topology-induced phenomena. In this regard, superconductor 3D nanoarchitectures feature magnetic field inhomogeneity, non-trivial topology of Meissner currents and complex dynamics of topological defects. Here, we investigate theoretically topological transitions in the dynamics of vortices and slips of the phase of the order parameter in open superconductor nanotubes under a modulated transport current. Relying upon the time-dependent Ginzburg–Landau equation, we reveal two distinct voltage regimes when (i) a dominant part of the tube is in either the normal or superconducting state and (ii) a complex interplay between vortices, phase-slip regions and screening currents determines a rich FFT voltage spectrum. Our findings unveil novel dynamical states in superconductor open nanotubes, such as paraxial and azimuthal phase-slip regions, their branching and coexistence with vortices, and allow for control of these states by superimposed dc and ac current stimuli.
  • Item
    Multi-method study of the Middle Pleistocene loess-palaeosol sequence of Köndringen, SW Germany
    (Göttingen : Copernicus, 2023) Schwahn, Lea; Schulze, Tabea; Fülling, Alexander; Zeeden, Christian; Preusser, Frank; Sprafke, Tobias
    Loess-palaeosol sequences (LPSs) remain poorly investigated in the southern part of the Upper Rhine Graben but represent an important element to understand the environmental context controlling sediment dynamics in the area. A multi-method approach applied to the LPS at Köndringen reveals that its formation occurred during several glacial-interglacial cycles. Field observations, as well as colour, grain size, magnetic susceptibility, organic carbon, and carbonate content measured in three profiles at 5 cm resolution, provide detailed stratigraphical information. Only minor parts of the LPS are made up of loess sediment, whereas the major parts are polygenetic palaeosols and pedosediments of varying development that are partly intersected, testifying to a complex local geomorphic evolution. The geochronological framework is based on 10 cm resolution infrared-stimulated luminescence (IRSL) screening combined with 18 multi-elevated-temperature post-IR IRSL ages. The luminescence ages indicate that two polygenetic, truncated Luvisols formed during marine isotope stages (MISs) 9(-7?) and MIS 5e, whereas unaltered loess units correspond to the last glacial (MISs 5d-2) and MIS 8. The channel-like structure containing the two truncated Luvisols cuts into > 2 m thick pedosediments apparently deposited during MIS 12. At the bottom of the LPS, a horizon with massive carbonate concretions (loess dolls) occurs, which may correspond to at least one older interglacial.
  • Item
    Epidemics with mutating infectivity on small-world networks
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Rüdiger, Sten; Plietzsch, Anton; Sagués, Francesc; Sokolov, Igor M.; Kurths, Jürgen
    Epidemics and evolution of many pathogens occur on similar timescales so that their dynamics are often entangled. Here, in a first step to study this problem theoretically, we analyze mutating pathogens spreading on simple SIR networks with grid-like connectivity. We have in mind the spatial aspect of epidemics, which often advance on transport links between hosts or groups of hosts such as cities or countries. We focus on the case of mutations that enhance an agent’s infection rate. We uncover that the small-world property, i.e., the presence of long-range connections, makes the network very vulnerable, supporting frequent supercritical mutations and bringing the network from disease extinction to full blown epidemic. For very large numbers of long-range links, however, the effect reverses and we find a reduced chance for large outbreaks. We study two cases, one with discrete number of mutational steps and one with a continuous genetic variable, and we analyze various scaling regimes. For the continuous case we derive a Fokker-Planck-like equation for the probability density and solve it for small numbers of shortcuts using the WKB approximation. Our analysis supports the claims that a potentiating mutation in the transmissibility might occur during an epidemic wave and not necessarily before its initiation. © 2020, The Author(s).