Search Results

Now showing 1 - 10 of 18
  • Item
    Revealing the co-action of viscous and multistability hysteresis in an adhesive, nominally flat punch: A combined numerical and experimental study
    ([Erscheinungsort nicht ermittelbar] : arXiv, 2022) Christian Müller, Manar Samri, René Hensel, Eduard Arzt, Martin H. Müser
    Viscoelasticity is well known to cause a significant hysteresis of crack closure and opening when an elastomer is brought in and out of contact with a flat, rigid counterface. In contrast, the idea that adhesive hysteresis can also result under quasi-static driving due to small-scale, elastic multistability is relatively new. Here, we study a system in which both mechanisms act concurrently. Specifically, we compare the simulated and experimentally measured time evolution of the interfacial force and the real contact area between a soft elastomer and a rigid, flat punch, to which small-scale, single-sinusoidal roughness is added. To this end, we further the Green's function molecular dynamics method and extend recently developed imaging techniques to elucidate the rate- and preload-dependence of the pull-off process. Our results reveal that hysteresis is much enhanced when the saddle points of the topography come into contact, which, however, is impeded by viscoelastic forces and may require sufficiently large preloads. A similar coaction of viscous- and multistability effects is expected to occur in macroscopic polymer contacts and be relevant, e.g., for pressure-sensitive adhesives and modern adhesive gripping devices.
  • Item
    Ionophobicity of carbon sub-nanometer pores enables efficient desalination at high salinity
    (Maryland Heights, MO : Cell Press, 2022) Zhang, Yuan; Prehal, Christian; Jiang, Huili; Liu, Yang; Feng, Guang; Presser, Volker
    Electrochemical seawater desalination has drawn significant attention as an energy-efficient technique to address the global issue of water remediation. Microporous carbons, that is, carbons with pore sizes smaller than 2 nm, are commonly used for capacitive deionization. However, micropores are ineffective for capacitive deionization at high molar strength because of their inability to permselectively uptake ions. In our work, we combine experimental work with molecular dynamics simulation and reveal the ability of sub-nanometer pores (ultramicropores) to effectively desalinate aqueous media at seawater-like molar strength. This is done without any ion-exchange membrane. The desalination capacity in 600 mM reaches 12 mg/g, with a charge efficiency of 94% and high cycling stability over 200 cycles (97% of charge efficiency retention). Using molecular dynamic simulations and providing experimental data, our work makes it possible both to understand and to calculate desalination capacity and charge efficiency at high molar strength as a function of pore size.
  • Item
    Best practice for electrochemical water desalination data generation and analysis
    (Maryland Heights, MO : Cell Press, 2023) Torkamanzadeh, Mohammad; Kök, Cansu; Burger, Peter Rolf; Ren, Panyu; Zhang, Yuan; Lee, Juhan; Kim, Choonsoo; Presser, Volker
    Electrochemical desalination shows promise for ion-selective, energy-efficient water desalination. This work reviews performance metrics commonly used for electrochemical desalination. We provide a step-by-step guide on acquiring, processing, and calculating raw desalination data, emphasizing informative and reliable figures of merit. A typical experiment uses calibrated conductivity probes to relate measured conductivity to concentration. Using a standard electrochemical desalination cell with activated carbon electrodes, we demonstrate the calculation of desalination capacity, charge efficiency, energy consumption, and ion selectivity metrics. We address potential pitfalls in performance metric calculations, including leakage current (charge) considerations and aging of conductivity probes, which can lead to inaccurate results. The relationships between pH, temperature, and conductivity are explored, highlighting their influence on final concentrations. Finally, we provide a checklist for calculating performance metrics and planning electrochemical desalination tests to ensure accuracy and reliability. Additionally, we offer simplified spreadsheet tools to aid data processing, system design, estimations, and upscaling.
  • Item
    Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries
    (London [u.a.] : RSC, 2022) Arnold, Stefanie; Gentile, Antonio; Li, Yunjie; Wang, Qingsong; Marchionna, Stefano; Ruffo, Riccardo; Presser, Volker
    Due to their versatile properties and excellent electrical conductivity, MXenes have become attractive materials for alkali metal-ion batteries. However, as the capacity is limited to lower values due to the intercalation mechanism, these materials can hardly keep up in the ever-fast-growing community of battery research. Antimony has a promisingly high theoretical sodiation capacity characterized by an alloying reaction. The main drawback of this type of battery material is related to the high volume changes during cycling, often leading to electrode cracking and pulverization, resulting in poor electrochemical performance. A synergistic effect of combing antimony and MXene can be expected to obtain an optimized electrochemical system to overcome capacity fading of antimony while taking advantage of MXene charge storage ability. In this work, variation of the synthesis parameters and material design strategy have been dedicated to achieving the optimized antimony/MXene hybrid electrodes for high-performance sodium-ion batteries. The optimized performance does not align with the highest amount of antimony, the smallest nanoparticles, or the largest interlayer distance of MXene but with the most homogeneous distribution of antimony and MXene while both components remain electrochemically addressable. As a result, the electrode with 40 mass% MXene, not previously expanded, etched with 5 mass% HF and 60% antimony synthesized on the surfaces of MXene emerged as the best electrode. We obtained a high reversible capacity of 450 mA h g−1 at 0.1 A g−1 with a capacity retention of around 96% after 100 cycles with this hybrid material. Besides the successful cycling stability, this material also exhibits high rate capability with a capacity of 365 mA h g−1 at 4 A g−1. In situ XRD measurements and post mortem analysis were used to investigate the reaction mechanism.
  • Item
    Formation of intermittent covalent bonds at high contact pressure limits superlow friction on epitaxial graphene
    (College Park, MD : APS, 2023) Szczefanowicz, Bartosz; Kuwahara, Takuya; Filleter, Tobin; Klemenz, Andreas; Mayrhofer, Leonhard; Bennewitz, Roland; Moseler, Michael
    Epitaxial graphene on SiC(0001) exhibits superlow friction due to its weak out-of-plane interactions. Friction-force microscopy with silicon tips shows an abrupt increase of friction by one order of magnitude above a threshold normal force. Density-functional tight-binding simulations suggest that this wearless high-friction regime involves an intermittent sp3 rehybridization of graphene at contact pressure exceeding 10 GPa. The simultaneous formation of covalent bonds with the tip's silica surface and the underlying SiC interface layer establishes a third mechanism limiting the superlow friction on epitaxial graphene, in addition to dissipation in elastic instabilities and in wear processes.
  • Item
    Continuous wet chemical synthesis of Mo(C,N,O)x as anode materials for Li-ion batteries
    (London [u.a.] : RSC, 2023) Abdirahman Mohamed, Mana; Arnold, Stefanie; Janka, Oliver; Quade, Antje; Schmauch, Jörg; Presser, Volker; Kickelbick, Guido
    Molybdenum carbides, oxides, and mixed anionic carbide–nitride–oxides Mo(C,N,O)x are potential anode materials for lithium-ion batteries. Here we present the preparation of hybrid inorganic–organic precursors by a precipitation reaction of ammonium heptamolybdate ((NH4)6Mo7O24) with para-phenylenediamine in a continuous wet chemical process known as a microjet reactor. The mixing ratio of the two components has a crucial influence on the chemical composition of the obtained material. Pyrolysis of the precipitated precursor compounds preserved the size and morphology of the micro- to nanometer-sized starting materials. Changes in pyrolysis conditions such as temperature and time resulted in variations of the final compositions of the products, which consisted of mixtures of Mo(C,N,O)x, MoO2, Mo2C, Mo2N, and Mo. We optimized the reaction conditions to obtain carbide-rich phases. When evaluated as an anode material for application in lithium-ion battery half-cells, one of the optimized materials shows a remarkably high capacity of 933 mA h g−1 after 500 cycles. The maximum capacity is reached after an activation process caused by various conversion reactions with lithium.
  • Item
    Prussian blue and its analogues as functional template materials: control of derived structure compositions and morphologies
    (London [u.a.] : RSC, 2023) Bornamehr, Behnoosh; Presser, Volker; Zarbin, Aldo J. G.; Yamauchi, Yusuke; Husmann, Samantha
    Hexacyanometallates, known as Prussian blue (PB) and its analogues (PBAs), are a class of coordination compounds with a regular and porous open structure. The PBAs are formed by the self-assembly of metallic species and cyanide groups. A uniform distribution of each element makes the PBAs robust templates to prepare hollow and highly porous (hetero)nanostructures of metal oxides, sulfides, carbides, nitrides, phosphides, and (N-doped) carbon, among other compositions. In this review, we examine methods to derive materials from PBAs focusing on the correlation between synthesis steps and derivative morphologies and composition. Insights into catalytic and electrochemical properties resulting from different derivatization strategies are also presented. We discuss challenges in manipulating the derivatives' properties, give perspectives of synthetic approaches for the target applications and present an outlook on less investigated grounds in Prussian blue derivatives.
  • Item
    Rhodamine 6G and 800 intermolecular heteroaggregates embedded in PMMA for near-infrared wavelength shifting
    (London [u.a.] : RSC, 2022) Castillo-Seoane, Javier; Gonzalez-Garcia, Lola; Obrero-Perez, José M.; Aparicio, Francisco J.; Borrás, Ana; González-Elipe, Agustín R.; Barranco, Ángel; Sanchez-Valencia, Juan R.
    The opto-electronic properties of small-molecules and functional dyes usually differ when incorporated into solid matrices with respect to their isolated form due to an aggregation phenomenon that alters their optical and fluorescent properties. These spectroscopic modifications are studied in the framework of the exciton theory of aggregates, which has been extensively applied in the literature for the study of molecular aggregates of the same type of molecules (homoaggregation). Despite the demonstrated potential of the control of the heteroaggregation process (aggregation of different types of molecules), most of the reported works are devoted to intramolecular aggregates, complex molecules formed by several chromophores attached by organic linkers. The intramolecular aggregates are specifically designed to hold a certain molecular structure that, on the basis of the exciton theory, modifies their optical and fluorescent properties with respect to the isolated chromophores that form the molecule. The present article describes in detail the incorporation of Rhodamine 6G (Rh6G) and 800 (Rh800) into polymeric matrices of poly-(methyl methacrylate), PMMA. The simultaneous incorporation of both dyes results in an enhanced fluorescent emission in the near-infrared (NIR), originating from the formation of ground-state Rh6G–Rh800 intermolecular heteroaggregates. The systematic control of the concentration of both rhodamines provides a model system for the elucidation of the heteroaggregate formation. The efficient energy transfer between Rh6G and Rh800 molecules can be used as wavelength shifters to convert effectively the light from visible to NIR, a very convenient wavelength range for many practical applications which make use of inexpensive commercial detectors and systems.
  • Item
    The double-well Bose Hubbard model with nearest-neighbor and cavity-mediated long-range interactions
    ([Ithaca, NY] : Arxiv.org, 2023) Sicks, Johannes; Rieger, Heiko
    We consider a one-dimensional Bose-Hubbard model (BHM) with on-site double-well potentials and study the effect of nearest-neighbor repulsion and cavity-mediated long-range interactions by calculating the ground-state phase diagrams with quantum Monte-Carlo simulations. We show that when the intra-well repulsion is as strong as the on-site repulsion a dimerized Mott insulator phase appears at the tip of the dimerized Density Wave phase for a density of one particle per double well. Furthermore, we find a dimerized Haldane insulator phase in the double-well BHM with nearest-neighbor interaction, which is identical to a dimerized BHM with repulsive interactions up to the third neighbor.
  • Item
    Non-Markovian and Collective Search Strategies
    ([Ithaca, NY] : Arxiv.org, 2023) Meyer, Hugues; Rieger, Heiko
    Agents searching for a target can improve their efficiency by memorizing where they have already been searching or by cooperating with other searchers and using strategies that benefit from collective effects. This chapter reviews such concepts: non-Markovian and collective search strategies. We start with the first passage properties of continuous non-Markovian processes and then proceed to the discrete random walker with 1-step and n-step memory. Next we discuss the auto-chemotactic walker, a random walker that produces a diffusive chemotactic cue from which the walker tries to avoid. Then ensembles of agents searching for a single target are discussed, whence the search efficiency may comprise in addition to the first passage time also metabolic costs. We consider the first passage properties of ensembles of chemotactic random walkers and then the pursuit problem, in which searchers (or hunters / predators) see the mobile target over a certain distance. Evasion strategies of single or many targets are also elucidated. Finally we review collective foraging strategies comprising many searchers and many immobile targets. We finish with an outlook on future research directions comprising yet unexplored search strategies of immune cells and in swarm robotics.