Search Results

Now showing 1 - 8 of 8
  • Item
    Synthesis of Modified Poly(vinyl Alcohol)s and Their Degradation Using an Enzymatic Cascade
    (Weinheim : Wiley-VCH, 2023) von Haugwitz, Gerlis; Donnelly, Kian; Di Filippo, Mara; Breite, Daniel; Phippard, Max; Schulze, Agnes; Wei, Ren; Baumann, Marcus; Bornscheuer, Uwe T.
    Poly(vinyl alcohol) (PVA) is a water-soluble synthetic vinyl polymer with remarkable physical properties including thermostability and viscosity. Its biodegradability, however, is low even though a large amount of PVA is released into the environment. Established physical-chemical degradation methods for PVA have several disadvantages such as high price, low efficiency, and secondary pollution. Biodegradation of PVA by microorganisms is slow and frequently involves pyrroloquinoline quinone (PQQ)-dependent enzymes, making it expensive due to the costly cofactor and hence unattractive for industrial applications. In this study, we present a modified PVA film with improved properties as well as a PQQ-independent novel enzymatic cascade for the degradation of modified and unmodified PVA. The cascade consists of four steps catalyzed by three enzymes with in situ cofactor recycling technology making this cascade suitable for industrial applications.
  • Item
    Cryo-printed microfluidics enable rapid prototyping for optical-cell analysis
    (Heidelberg : Springer, 2022) Garmasukis, Rokas; Hackl, Claudia; Dusny, Christian; Elsner, Christian; Charvat, Ales; Schmid, Andreas; Abel, Bernd
    This paper highlights an innovative, low-cost rapid-prototyping method for generating microfluidic chips with extraordinary short fabrication times of only a few minutes. Microchannels and inlet/outlet ports are created by controlled deposition of aqueous microdroplets on a cooled surface resulting in printed ice microstructures, which are in turn coated with a UV-curable acrylic cover layer. Thawing leaves an inverse imprint as a microchannel structure. For an exemplary case, we applied this technology for creating a microfluidic chip for cell-customized optical-cell analysis. The chip design includes containers for cell cultivation and analysis. Container shape, length, position, and angle relative to the main channel were iteratively optimized to cultivate and analyze different cell types. With the chip, we performed physiological analyses of morphologically distinct prokaryotic Corynebacterium glutamicum DM1919, eukaryotic Hansenula polymorpha RB11 MOX-GFP, and phototrophic Synechocystis sp. PCC 6803 cells via quantitative time-lapse fluorescence microscopy. The technology is not limited to rapid prototyping of complex biocompatible microfluidics. Further exploration may include printing with different materials other than water, printing on other substrates in-situ biofunctionalization, the inclusion of electrodes and many other applications.
  • Item
    Heterobimetallic conducting polymers based on salophen complexes via electrosynthesis
    (London [u.a.] : RSC, 2023) Bia, Francesca; Gualandi, Isacco; Griebel, Jan; Rasmussen, Leon; Hallak, Bassam; Tonelli, Domenica; Kersting, Berthold
    In this work, we report the first electrochemical synthesis of two copolymeric bimetallic conducting polymers by a simple anodic electropolymerization method. The adopted precursors are electroactive transition metal (M = Ni, Cu and Fe) salophen complexes, which can be easily obtained by direct chemical synthesis. The resulting films, labeled poly-NiCu and poly-CuFe, were characterized by cyclic voltammetry in both organic and aqueous media, attenuated total reflectance Fourier transform infrared spectroscopy, UV-vis spectroscopy, scanning electron microscopy, and coupled energy dispersive X-ray spectroscopy. The films are conductive and exhibit great electrochemical stability in both organic and aqueous media (resistant over 100 cycles without significant loss in current response or changes in electrochemical behavior), which makes them good candidates for an array of potential applications. Electrochemical detection of ascorbic acid was performed using both materials.
  • Item
    Low-temperature atmospheric pressure plasma conversion of polydimethylsiloxane and polysilazane precursor layers to oxide thin films
    (Weinheim : Wiley VCH, 2023) Rudolph, Martin; Birtel, Peter; Arnold, Thomas; Prager, Andrea; Naumov, Sergej; Helmstedt, Ulrike; Anders, André; With, Patrick C.
    We study the conversion of two polymeric silicon precursor compound layers (perhydropolysilazane and polydimethylsiloxane) on a silicon wafer and polyethylene terephthalate substrates to silicon oxide thin films using a pulsed atmospheric pressure plasma jet. Varying the scan velocity and the number of treatments results in various film compositions, as determined by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The mechanism suggested for the conversion process includes the decomposition of the precursor triggered by plasma-produced species, the oxidation of the surface, and finally, the diffusion of oxygen into the film, while gases produced during the precursor decomposition diffuse out of the film. The latter process is possibly facilitated by local plasma heating of the surface. The precursor conversion appears to depend sensitively on the balance between the different contributions to the conversion mechanism.
  • Item
    Investigating the morphology of bulk heterojunctions by laser photoemission electron microscopy
    (Amsterdam [u.a.] : Elsevier Science, 2022) Niefind, Falk; Shivhare, Rishi; Mannsfeld, Stefan C.B.; Abel, Bernd; Hambsch, Mike
    The nanoscale morphology of bulk heterojunctions is highly important for the charge dissociation and transport in organic solar cells and ultimately defines the performance of the cell. The visualization of this nano-morphology in terms of domain size and polymer orientation in a fast and straightforward way is therefore of great interest to evaluate the suitability of a film for efficient solar cells. Here, we demonstrate that the morphology of different blends of poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) can be imaged and analyzed by employing photoemission electron microscopy.
  • Item
    A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation
    (Lausanne : Frontiers Media, 2023) Şener Raman, Tuğçe; Kuehnert, Mathias; Daikos, Olesya; Scherzer, Tom; Krömmelbein, Catharina; Mayr, Stefan G.; Abel, Bernd; Schulze, Agnes
    Gelatin-based hydrogels are highly desirable biomaterials for use in wound dressing, drug delivery, and extracellular matrix components due to their biocompatibility and biodegradability. However, insufficient and uncontrollable mechanical properties and degradation are the major obstacles to their application in medical materials. Herein, we present a simple but efficient strategy for a novel hydrogel by incorporating the synthetic hydrogel monomer polyethylene glycol diacrylate (PEGDA, offering high mechanical stability) into a biological hydrogel compound (gelatin) to provide stable mechanical properties and biocompatibility at the resulting hybrid hydrogel. In the present work, PEGDA/gelatin hybrid hydrogels were prepared by electron irradiation as a reagent-free crosslinking technology and without using chemical crosslinkers, which carry the risk of releasing toxic byproducts into the material. The viscoelasticity, swelling behavior, thermal stability, and molecular structure of synthesized hybrid hydrogels of different compound ratios and irradiation doses were investigated. Compared with the pure gelatin hydrogel, 21/9 wt./wt. % PEGDA/gelatin hydrogels at 6 kGy exhibited approximately up to 1078% higher storage modulus than a pure gelatin hydrogel, and furthermore, it turned out that the mechanical stability increased with increasing irradiation dose. The chemical structure of the hybrid hydrogels was analyzed by Fourier-transform infrared (FTIR) spectroscopy, and it was confirmed that both compounds, PEGDA and gelatin, were equally present. Scanning electron microscopy images of the samples showed fracture patterns that confirmed the findings of viscoelasticity increasing with gelatin concentration. Infrared microspectroscopy images showed that gelatin and PEGDA polymer fractions were homogeneously mixed and a uniform hybrid material was obtained after electron beam synthesis. In short, this study demonstrates that both the presence of PEGDA improved the material properties of PEGDA/gelatin hybrid hydrogels and the resulting properties are fine-tuned by varying the irradiation dose and PEGDA/gelatin concentration.
  • Item
    Laminin Adsorption and Adhesion of Neurons and Glial Cells on Carbon Implanted Titania Nanotube Scaffolds for Neural Implant Applications
    (Basel : MDPI, 2022) Frenzel, Jan; Kupferer, Astrid; Zink, Mareike; Mayr, Stefan G.
    Interfacing neurons persistently to conductive matter constitutes one of the key challenges when designing brain-machine interfaces such as neuroelectrodes or retinal implants. Novel materials approaches that prevent occurrence of loss of long-term adhesion, rejection reactions, and glial scarring are highly desirable. Ion doped titania nanotube scaffolds are a promising material to fulfill all these requirements while revealing sufficient electrical conductivity, and are scrutinized in the present study regarding their neuron–material interface. Adsorption of laminin, an essential extracellular matrix protein of the brain, is comprehensively analyzed. The implantation-dependent decline in laminin adsorption is revealed by employing surface characteristics such as nanotube diameter, (Formula presented.) -potential, and surface free energy. Moreover, the viability of U87-MG glial cells and SH-SY5Y neurons after one and four days are investigated, as well as the material’s cytotoxicity. The higher conductivity related to carbon implantation does not affect the viability of neurons, although it impedes glial cell proliferation. This gives rise to novel titania nanotube based implant materials with long-term stability, and could reduce undesirable glial scarring.
  • Item
    Structural Breakdown of Collagen Type I Elastin Blend Polymerization
    (Basel : MDPI, 2022) Wilharm, Nils; Fischer, Tony; Hayn, Alexander; Mayr, Stefan G.
    Biopolymer blends are advantageous materials with novel properties that may show performances way beyond their individual constituents. Collagen elastin hybrid gels are a new representative of such materials as they employ elastin’s thermo switching behavior in the physiological temperature regime. Although recent studies highlight the potential applications of such systems, little is known about the interaction of collagen and elastin fibers during polymerization. In fact, the final network structure is predetermined in the early and mostly arbitrary association of the fibers. We investigated type I collagen polymerized with bovine neck ligament elastin with up to 33.3 weight percent elastin and showed, by using a plate reader, zeta potential and laser scanning microscopy (LSM) experiments, that elastin fibers bind in a lateral manner to collagen fibers. Our plate reader experiments revealed an elastin concentration-dependent increase in the polymerization rate, although the rate increase was greatest at intermediate elastin concentrations. As elastin does not significantly change the structural metrics pore size, fiber thickness or 2D anisotropy of the final gel, we are confident to conclude that elastin is incorporated homogeneously into the collagen fibers.