Search Results

Now showing 1 - 10 of 128
  • Item
    Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device
    (Washington, DC : Soc., 2023) Corley-Wiciak, Cedric; Richter, Carsten; Zoellner, Marvin H.; Zaitsev, Ignatii; Manganelli, Costanza L.; Zatterin, Edoardo; Schülli, Tobias U.; Corley-Wiciak, Agnieszka A.; Katzer, Jens; Reichmann, Felix; Klesse, Wolfgang M.; Hendrickx, Nico W.; Sammak, Amir; Veldhorst, Menno; Scappucci, Giordano; Virgilio, Michele; Capellini, Giovanni
    A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 μm, respectively. The short-ranged fluctuations have a typical bandwidth of 2 × 10-4 and can be quantitatively linked to the compressive stressing action of the metal electrodes defining the qubits. By finite element mechanical simulations, it is estimated that this strain fluctuation is increased up to 6 × 10-4 at cryogenic temperature. The longer-ranged fluctuations are of the 10-3 order and are associated with misfit dislocations in the plastically relaxed virtual substrate. From this, energy variations of the light and heavy-hole energy maxima of the order of several 100 μeV and 1 meV are calculated for electrodes and dislocations, respectively. These insights over material-related inhomogeneities may feed into further modeling for optimization and design of large-scale quantum processors manufactured using the mainstream Si-based microelectronics technology.
  • Item
    Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2
    (Melville, NY : AIP Publ., 2023) Tschirner, Teresa; Keßler, Philipp; Gonzalez Betancourt, Ruben Dario; Kotte, Tommy; Kriegner, Dominik; Büchner, Bernd; Dufouleur, Joseph; Kamp, Martin; Jovic, Vedran; Smejkal, Libor; Sinova, Jairo; Claessen, Ralph; Jungwirth, Tomas; Moser, Simon; Reichlova, Helena; Veyrat, Louis
    Observations of the anomalous Hall effect in RuO2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe, the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2 is excluded by symmetry for the Néel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the Néel vector from the easy-axis toward the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2 thin-film samples, whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field Hc ≃ 55 T that was inaccessible in earlier studies but is consistent with the expected Néel-vector reorientation field.
  • Item
    Amorphous-Like Ultralow Thermal Transport in Crystalline Argyrodite Cu7PS6
    (Weinheim : Wiley-VCH, 2024) Shen, Xingchen; Ouyang, Niuchang; Huang, Yuling; Tung, Yung‐Hsiang; Yang, Chun‐Chuen; Faizan, Muhammad; Perez, Nicolas; He, Ran; Sotnikov, Andrei; Willa, Kristin; Wang, Chen; Chen, Yue; Guilmeau, Emmanuel
    Due to their amorphous-like ultralow lattice thermal conductivity both below and above the superionic phase transition, crystalline Cu- and Ag-based superionic argyrodites have garnered widespread attention as promising thermoelectric materials. However, despite their intriguing properties, quantifying their lattice thermal conductivities and a comprehensive understanding of the microscopic dynamics that drive these extraordinary properties are still lacking. Here, an integrated experimental and theoretical approach is adopted to reveal the presence of Cu-dominated low-energy optical phonons in the Cu-based argyrodite Cu7PS6. These phonons yield strong acoustic-optical phonon scattering through avoided crossing, enabling ultralow lattice thermal conductivity. The Unified Theory of thermal transport is employed to analyze heat conduction and successfully reproduce the experimental amorphous-like ultralow lattice thermal conductivities, ranging from 0.43 to 0.58 W m−1 K−1, in the temperature range of 100–400 K. The study reveals that the amorphous-like ultralow thermal conductivity of Cu7PS6 stems from a significantly dominant wave-like conduction mechanism. Moreover, the simulations elucidate the wave-like thermal transport mainly results from the contribution of Cu-associated low-energy overlapping optical phonons. This study highlights the crucial role of low-energy and overlapping optical modes in facilitating amorphous-like ultralow thermal transport, providing a thorough understanding of the underlying complex dynamics of argyrodites.
  • Item
    Growth of PdCoO2 films with controlled termination by molecular-beam epitaxy and determination of their electronic structure by angle-resolved photoemission spectroscopy
    (Melville, NY : AIP Publ., 2022) Song, Qi; Sun, Jiaxin; Parzyck, Christopher T.; Miao, Ludi; Xu, Qing; Hensling, Felix V. E.; Barone, Matthew R.; Hu, Cheng; Kim, Jinkwon; Faeth, Brendan D.; Paik, Hanjong; King, Phil D. C.; Shen, Kyle M.; Schlom, Darrell G.
    Utilizing the powerful combination of molecular-beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES), we produce and study the effect of different terminating layers on the electronic structure of the metallic delafossite PdCoO2. Attempts to introduce unpaired electrons and synthesize new antiferromagnetic metals akin to the isostructural compound PdCrO2 have been made by replacing cobalt with iron in PdCoO2 films grown by MBE. Using ARPES, we observe similar bulk bands in these PdCoO2 films with Pd-, CoO2-, and FeO2-termination. Nevertheless, Pd- and CoO2-terminated films show a reduced intensity of surface states. Additionally, we are able to epitaxially stabilize PdFexCo1-xO2 films that show an anomaly in the derivative of the electrical resistance with respect to temperature at 20 K, but do not display pronounced magnetic order.
  • Item
    Nd─Nd Bond in Ih and D5h Cage Isomers of Nd2@C80 Stabilized by Electrophilic CF3 Addition
    (Weinheim : Wiley-VCH, 2023) Yang, Wei; Velkos, Georgios; Rosenkranz, Marco; Schiemenz, Sandra; Liu, Fupin; Popov, Alexey A.
    Synthesis of molecular compounds with metal–metal bonds between 4f elements is recognized as one of the fascinating milestones in lanthanide metallochemistry. The main focus of such studies is on heavy lanthanides due to the interest in their magnetism, while bonding between light lanthanides remains unexplored. In this work, the Nd─Nd bonding in Nd-dimetallofullerenes as a case study of metal–metal bonding between early lanthanides is demonstrated. Combined experimental and computational study proves that pristine Nd2@C80 has an open shell structure with a single electron occupying the Nd─Nd bonding orbital. Nd2@C80 is stabilized by a one-electron reduction and further by the electrophilic CF3 addition to [Nd2@C80]−. Single-crystal X-ray diffraction reveals the formation of two Nd2@C80(CF3) isomers with D5h-C80 and Ih-C80 carbon cages, both featuring a single-electron Nd─Nd bond with the length of 3.78–3.79 Å. The mutual influence of the exohedral CF3 group and endohedral metal dimer in determining the molecular structure of the adducts is analyzed. Unlike Tb or Dy analogs, which are strong single-molecule magnets with high blocking temperature of magnetization, the slow relaxation of magnetization in Nd2@Ih-C80(CF3) is detectable via out-of-phase magnetic susceptibility only below 3 K and in the presence of magnetic field.
  • Item
    High-Quality Graphene Using Boudouard Reaction
    (Weinheim : Wiley-VCH, 2022) Grebenko, Artem K.; Krasnikov, Dmitry V.; Bubis, Anton V.; Stolyarov, Vasily S.; Vyalikh, Denis V.; Makarova, Anna A.; Fedorov, Alexander; Aitkulova, Aisuluu; Alekseeva, Alena A.; Gilshtein, Evgeniia; Bedran, Zakhar; Shmakov, Alexander N.; Alyabyeva, Liudmila; Mozhchil, Rais N.; Ionov, Andrey M.; Gorshunov, Boris P.; Laasonen, Kari; Podzorov, Vitaly; Nasibulin, Albert G.
    Following the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO2 mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals. Unique features of the Boudouard reaction coupled with CO-driven catalyst engineering ensure not only suppression of the second layer growth but also provide a simple and reliable technique for surface cleaning. Aside from being a novel carbon source, carbon monoxide ensures peculiar modification of catalyst and in general opens avenues for breakthrough graphene-catalyst composite production.
  • Item
    Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity
    (Weinheim : Wiley-VCH, 2022) Borrmann, Fabian; Tsuda, Takuya; Guskova, Olga; Kiriy, Nataliya; Hoffmann, Cedric; Neusser, David; Ludwigs, Sabine; Lappan, Uwe; Simon, Frank; Geisler, Martin; Debnath, Bipasha; Krupskaya, Yulia; Al‐Hussein, Mahmoud; Kiriy, Anton
    The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective “in-water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10−2 S cm−1 under ambient conditions and 10−1 S cm−1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.
  • Item
    Elucidating Structure Formation in Highly Oriented Triple Cation Perovskite Films
    (Weinheim : Wiley-VCH, 2023) Telschow, Oscar; Scheffczyk, Niels; Hinderhofer, Alexander; Merten, Lena; Kneschaurek, Ekaterina; Bertram, Florian; Zhou, Qi; Löffler, Markus; Schreiber, Frank; Paulus, Fabian; Vaynzof, Yana
    Metal halide perovskites are an emerging class of crystalline semiconductors of great interest for application in optoelectronics. Their properties are dictated not only by their composition, but also by their crystalline structure and microstructure. While significant efforts are dedicated to the development of strategies for microstructural control, significantly less is known about the processes that govern the formation of their crystalline structure in thin films, in particular in the context of crystalline orientation. This work investigates the formation of highly oriented triple cation perovskite films fabricated by utilizing a range of alcohols as an antisolvent. Examining the film formation by in situ grazing-incidence wide-angle X-ray scattering reveals the presence of a short-lived highly oriented crystalline intermediate, which is identified as FAI-PbI2-xDMSO. The intermediate phase templates the crystallization of the perovskite layer, resulting in highly oriented perovskite layers. The formation of this dimethylsulfoxide (DMSO) containing intermediate is triggered by the selective removal of N,N-dimethylformamide (DMF) when alcohols are used as an antisolvent, consequently leading to differing degrees of orientation depending on the antisolvent properties. Finally, this work demonstrates that photovoltaic devices fabricated from the highly oriented films, are superior to those with a random polycrystalline structure in terms of both performance and stability.
  • Item
    Intermixing-Driven Surface and Bulk Ferromagnetism in the Quantum Anomalous Hall Candidate MnBi6Te10
    (Weinheim : Wiley-VCH, 2023) Tcakaev, Abdul‐Vakhab; Rubrecht, Bastian; Facio, Jorge I.; Zabolotnyy, Volodymyr B.; Corredor, Laura T.; Folkers, Laura C.; Kochetkova, Ekaterina; Peixoto, Thiago R. F.; Kagerer, Philipp; Heinze, Simon; Bentmann, Hendrik; Green, Robert J.; Gargiani, Pierluigi; Valvidares, Manuel; Weschke, Eugen; Haverkort, Maurits W.; Reinert, Friedrich; van den Brink, Jeroen; Büchner, Bernd; Wolter, Anja U. B.; Isaeva, Anna; Hinkov, Vladimir
    The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi2Te4 and MnBi4Te7 benchmark the (MnBi2Te4)(Bi2Te3)n family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi2Te4 septuple layers (SLs). However, the QAHE realization is complicated in MnBi2Te4 and MnBi4Te7 due to the substantial antiferromagnetic (AFM) coupling between the SLs. An FM state, advantageous for the QAHE, can be stabilized by interlacing the SLs with an increasing number n of Bi2Te3 quintuple layers (QLs). However, the mechanisms driving the FM state and the number of necessary QLs are not understood, and the surface magnetism remains obscure. Here, robust FM properties in MnBi6Te10 (n = 2) with Tc ≈ 12 K are demonstrated and their origin is established in the Mn/Bi intermixing phenomenon by a combined experimental and theoretical study. The measurements reveal a magnetically intact surface with a large magnetic moment, and with FM properties similar to the bulk. This investigation thus consolidates the MnBi6Te10 system as perspective for the QAHE at elevated temperatures.
  • Item
    Elastomeric Optical Waveguides by Extrusion Printing
    (Weinheim : Wiley, 2022) Feng, Jun; Zheng, Yijun; Jiang, Qiyang; Włodarczyk‐Biegun, Małgorzata K.; Pearson, Samuel; del Campo, Aránzazu
    Advances in optogenetics and the increasing use of implantable devices for therapies and health monitoring are driving demand for compliant, biocompatible optical waveguides and scalable methods for their manufacture. Molding, thermal drawing, and dip-coating are the most prevalent approaches in recent literature. Here the authors demonstrate that extrusion printing at room temperature can be used for continuous fabrication of compliant optical waveguides with polydimethylsiloxane (PDMS) core and crosslinked Pluronic F127-diacrylate (Pluronic-DA) cladding. The optical fibers are printed from fluid precursor inks and stabilized by physical interactions and photoinitiated crosslinking in the Pluronic-DA. The printed fibers show optical loss values of 0.13–0.34 dB cm–1 in air and tissue within the wavelength range of 405–520 nm. The fibers have a Young's Modulus (Pluronic cladding) of 150 kPa and can be stretched to more than 5 times their length. The optical loss of the fibers shows little variation with extension. This work demonstrates how printing can simplify the fabrication of compliant and stretchable devices from materials approved for clinical use. These can be of interest for optogenetic or photopharmacology applications in extensible tissues, like muscles or heart.