Search Results

Now showing 1 - 10 of 105
  • Item
    Management-induced changes in soil organic carbon on global croplands
    (Katlenburg-Lindau [u.a.] : Copernicus, 2022) Karstens, Kristine; Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Dondini, Marta; Heinke, Jens; Kuhnert, Matthias; Müller, Christoph; Rolinski, Susanne; Smith, Pete; Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander
    Soil organic carbon (SOC), one of the largest terrestrial carbon (C) stocks on Earth, has been depleted by anthropogenic land cover change and agricultural management. However, the latter has so far not been well represented in global C stock assessments. While SOC models often simulate detailed biochemical processes that lead to the accumulation and decay of SOC, the management decisions driving these biophysical processes are still little investigated at the global scale. Here we develop a spatially explicit data set for agricultural management on cropland, considering crop production levels, residue returning rates, manure application, and the adoption of irrigation and tillage practices. We combine it with a reduced-complexity model based on the Intergovernmental Panel on Climate Change (IPCC) tier 2 method to create a half-degree resolution data set of SOC stocks and SOC stock changes for the first 30 cm of mineral soils. We estimate that, due to arable farming, soils have lost around 34.6 GtC relative to a counterfactual hypothetical natural state in 1975. Within the period 1975-2010, this SOC debt continued to expand by 5 GtC (0.14 GtCyr-1) to around 39.6 GtC. However, accounting for historical management led to 2.1 GtC fewer (0.06 GtCyr-1) emissions than under the assumption of constant management. We also find that management decisions have influenced the historical SOC trajectory most strongly by residue returning, indicating that SOC enhancement by biomass retention may be a promising negative emissions technique. The reduced-complexity SOC model may allow us to simulate management-induced SOC enhancement - also within computationally demanding integrated (land use) assessment modeling.
  • Item
    Performance of seasonal forecasts for the flowering and veraison of two major Portuguese grapevine varieties
    (Amsterdam [u.a.] : Elsevier, 2023) Yang, Chenyao; Ceglar, Andrej; Menz, Christoph; Martins, Joana; Fraga, Helder; Santos, João A.
    Seasonal phenology forecasts are becoming increasingly demanded by winegrowers and viticulturists. Forecast performance needs to be investigated over space and time before practical applications. We assess seasonal forecast performance (skill, probability and accuracy) in predicting flowering and veraison stages of two representative varieties in Portugal over 1993–2017. The state-of-the-art forecast system ECMWF-SEAS5 provides 7-month seasonal forecasts and is coupled with a locally adapted phenology model. Overall, findings illustrate the dependence of forecast performance on initialization timings, regions and predicting subjects (stages and varieties). Forecast performance improves by delaying the initialization timing and only forecasts initialized on April 1st show better skills than climatology on predicting phenology terciles (early/normal/late). The considerable bias of daily values of seasonal climate predictions can represent the main barrier to accurate forecasts. Better prediction performance is consistently found in Central-Southern regions compared to Northern regions, attributing to an earlier phenology occurrence with a shorter forecast length. Comparable predictive skills between flowering and veraison for both varieties imply better predictability in summer. Consequently, promising seasonal phenology predictions are foreseen in Central-Southern wine regions using forecasts initialized on April 1st with approximately 1–2/3–4 months lead time for flowering/veraison: potential prediction errors are ∼2 weeks, along with an overall moderate forecast skill on categorical events. However, considerable inter-annual variability of forecast performance over the same classified phenology years reflects the substantial influence of climate variability. This may represent the main challenge for reliable forecasts in Mediterranean regions. Recommendations are suggested for methodological innovations and practical applications towards reliable regional phenology forecasts.
  • Item
    Understanding Socio-metabolic Inequalities Using Consumption Data from Germany
    (New York, NY : Guilford Publ., 2022) Schuster, Antonia; Otto, Ilona M.
    The Earth’s population of seven billion consume varying amounts of planetary resources with varying impacts on the environment. We combine the analytical tools offered by the socio-ecological metabolism and class theory and contribute to a novel social stratification theory to identify the differences in individual resource and energy use. This approach is applied to German society, we use per capita greenhouse gas emissions (GHG) as a proxy for resource and energy use and investigate socio-metabolic characteristics of individuals from an economic, social and cultural perspective. The results show large disparities and inequalities in emission patterns in the German society. For example, the GHG in the lowest and highest emission groups can differ by a magnitude of ten. Income, education, age, gender and regional differences (Eastern vs. Western Germany) result in distinct emission profiles. We question the focus on individual behavioral changes and consumption choices to reduce carbon emissions instead of structural changes through political decisions. We argue that emission differences are directly linked to the effects of inequalities and class differences in capitalist societies. Our research results show that natural resource and energy consumption are important for explaining social differentiation in modern societies.
  • Item
    Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations
    (Katlenburg-Lindau : Copernicus Ges., 2022) Riechers, Keno; Mitsui, Takahito; Boers, Niklas; Ghil, Michael
    The relative role of external forcing and of intrinsic variability is a key question of climate variability in general and of our planet's paleoclimatic past in particular. Over the last 100 years since Milankovic's contributions, the importance of orbital forcing has been established for the period covering the last 2.6gMyr and the Quaternary glaciation cycles that took place during that time. A convincing case has also been made for the role of several internal mechanisms that are active on timescales both shorter and longer than the orbital ones. Such mechanisms clearly have a causal role in Dansgaard-Oeschger and Heinrich events, as well as in the mid-Pleistocene transition. We introduce herein a unified framework for the understanding of the orbital forcing's effects on the climate system's internal variability on timescales from thousands to millions of years. This framework relies on the fairly recent theory of non-autonomous and random dynamical systems, and it has so far been successfully applied in the climate sciences for problems like the El Niño-Southern Oscillation, the oceans' wind-driven circulation, and other problems on interannual to interdecadal timescales. Finally, we provide further examples of climate applications and present preliminary results of interest for the Quaternary glaciation cycles in general and the mid-Pleistocene transition in particular.
  • Item
    Insolation evolution and ice volume legacies determine interglacial and glacial intensity
    (Katlenburg-Lindau : Copernicus Ges., 2022) Mitsui, Takahito; Tzedakis, Polychronis C.; Wolff, Eric W.
    Interglacials and glacials represent low and high ice volume end-members of ice age cycles. While progress has been made in our understanding of how and when transitions between these states occur, their relative intensity has been lacking an explanatory framework. With a simple quantitative model, we show that over the last 800 000 years interglacial intensity can be described as a function of the strength of the previous glacial and the summer insolation at high latitudes in both hemispheres during the deglaciation. Since the precession components in the boreal and austral insolations counteract each other, the amplitude increase in obliquity cycles after 430 000 years ago is imprinted in interglacial intensities, contributing to the manifestation of the so-called Mid-Brunhes Event. Glacial intensity is also linked to the strength of the previous interglacial, the time elapsed from it, and the evolution of boreal summer insolation. Our results suggest that the memory of previous climate states and the time course of the insolation are crucial for understanding interglacial and glacial intensities.
  • Item
    Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt–elevation and glacial isostatic adjustment feedbacks
    (Göttingen : Copernicus Publ., 2022) Zeitz, Maria; Haacker, Jan M.; Donges, Jonathan F.; Albrecht, Torsten; Winkelmann, Ricarda
    The stability of the Greenland Ice Sheet under global warming is governed by a number of dynamic processes and interacting feedback mechanisms in the ice sheet, atmosphere and solid Earth. Here we study the long-term effects due to the interplay of the competing melt-elevation and glacial isostatic adjustment (GIA) feedbacks for different temperature step forcing experiments with a coupled ice-sheet and solid-Earth model. Our model results show that for warming levels above 2 C, Greenland could become essentially ice-free within several millennia, mainly as a result of surface melting and acceleration of ice flow. These ice losses are mitigated, however, in some cases with strong GIA feedback even promoting an incomplete recovery of the Greenland ice volume. We further explore the full-factorial parameter space determining the relative strengths of the two feedbacks: our findings suggest distinct dynamic regimes of the Greenland Ice Sheets on the route to destabilization under global warming - from incomplete recovery, via quasi-periodic oscillations in ice volume to ice-sheet collapse. In the incomplete recovery regime, the initial ice loss due to warming is essentially reversed within 50000years, and the ice volume stabilizes at 61-93 of the present-day volume. For certain combinations of temperature increase, atmospheric lapse rate and mantle viscosity, the interaction of the GIA feedback and the melt-elevation feedback leads to self-sustained, long-term oscillations in ice-sheet volume with oscillation periods between 74000 and over 300000 years and oscillation amplitudes between 15-70 of present-day ice volume. This oscillatory regime reveals a possible mode of internal climatic variability in the Earth system on timescales on the order of 100000years that may be excited by or synchronized with orbital forcing or interact with glacial cycles and other slow modes of variability. Our findings are not meant as scenario-based near-term projections of ice losses but rather providing insight into of the feedback loops governing the "deep future"and, thus, long-term resilience of the Greenland Ice Sheet.
  • Item
    Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics
    (Göttingen : Copernicus, 2023) Feulner, Georg; Bukenberger, Mona; Petri, Stefan
    The instability with respect to global glaciation is a fundamental property of the climate system caused by the positive ice-albedo feedback. The atmospheric concentration of carbon dioxide (CO2) at which this Snowball bifurcation occurs changes through Earth's history, most notably because of the slowly increasing solar luminosity. Quantifying this critical CO2 concentration is not only interesting from a climate dynamics perspective but also constitutes an important prerequisite for understanding past Snowball Earth episodes, as well as the conditions for habitability on Earth and other planets. Earlier studies are limited to investigations with very simple climate models for Earth's entire history or studies of individual time slices carried out with a variety of more complex models and for different boundary conditions, making comparisons and the identification of secular changes difficult. Here, we use a coupled climate model of intermediate complexity to trace the Snowball bifurcation of an aquaplanet through Earth's history in one consistent model framework. We find that the critical CO2 concentration decreased more or less logarithmically with increasing solar luminosity until about 1 billion years ago but dropped faster in more recent times. Furthermore, there was a fundamental shift in the dynamics of the critical state about 1.2 billion years ago (unrelated to the downturn in critical CO2 values), driven by the interplay of wind-driven sea-ice dynamics and the surface energy balance: for critical states at low solar luminosities, the ice line lies in the Ferrel cell, stabilised by the poleward winds despite moderate meridional temperature gradients under strong greenhouse warming. For critical states at high solar luminosities, on the other hand, the ice line rests at the Hadley cell boundary, stabilised against the equatorward winds by steep meridional temperature gradients resulting from the increased solar energy input at lower latitudes and stronger Ekman transport in the ocean.
  • Item
    Complex systems in the spotlight: next steps after the 2021 Nobel Prize in Physics
    (Bristol : IOP Publ., 2023) Bianconi, Ginestra; Arenas, Alex; Biamonte, Jacob; Carr, Lincoln D; Kahng, Byungnam; Kertesz, Janos; Kurths, Jürgen; Lü, Linyuan; Masoller, Cristina; Motter, Adilson E; Perc, Matjaž; Radicchi, Filippo; Ramaswamy, Ramakrishna; Rodrigues, Francisco A; Sales-Pardo, Marta; San Miguel, Maxi; Thurner, Stefan; Yasseri, Taha
    The 2021 Nobel Prize in Physics recognized the fundamental role of complex systems in the natural sciences. In order to celebrate this milestone, this editorial presents the point of view of the editorial board of JPhys Complexity on the achievements, challenges, and future prospects of the field. To distinguish the voice and the opinion of each editor, this editorial consists of a series of editor perspectives and reflections on few selected themes. A comprehensive and multi-faceted view of the field of complexity science emerges. We hope and trust that this open discussion will be of inspiration for future research on complex systems.
  • Item
    Understanding the Drivers of Coastal Flood Exposure and Risk From 1860 to 2100
    (Hoboken, NJ : Wiley-Blackwell, 2022) Lincke, Daniel; Hinkel, Jochen; Mengel, Matthias; Nicholls, Robert J.
    Global coastal flood exposure (population and assets) has been growing since the beginning of the industrial age and is likely to continue to grow through 21st century. Three main drivers are responsible: (a) climate-related mean sea-level change, (b) vertical land movement contributing to relative sea-level rise, and (c) socio-economic development. This paper attributes growing coastal exposure and flood risk from 1860 to 2100 to these three drivers. For historic flood exposure (1860–2005) we find that the roughly six-fold increase in population exposure and 53-fold increase in asset exposure are almost completely explained by socio-economic development (>97% for population and >99% for assets). For future exposure (2005–2100), assuming a middle-of-the-road regionalized socio-economic scenario (SSP2) without coastal migration and sea-level rise according to RCP2.6 and RCP6.0, climate-change induced sea-level rise will become the most important driver for the growth in population exposure, while growth in asset exposure will still be mainly determined by socio-economic development.
  • Item
    A High-End Estimate of Sea Level Rise for Practitioners
    (Hoboken, NJ : Wiley-Blackwell, 2022) van de Wal, R.S.W.; Nicholls, R J.; Behar, D.; McInnes, K.; Stammer, D.; Lowe, J.A.; Church, J.A.; DeConto, R.; Fettweis, X.; Goelzer, H.; Haasnoot, M.; Haigh, I.D.; Hinkel, J.; Horton, B.P.; James, T.S.; Jenkins, A.; LeCozannet, G.; Levermann, A.; Lipscomb, W.H.; Marzeion, B.; Pattyn, F.; Payne, A.J.; Pfeffer, W.T.; Price, S.F.; Seroussi, H.; Sun, S.; Veatch, W.; White, K.
    Sea level rise (SLR) is a long-lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process-based models. However, risk-averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high-end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high-end scenarios. High-end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1-2.6) relative to pre-industrial values our high-end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5-8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long-term benefits of mitigation. However, even a modest 2°C warming may cause multi-meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high-end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high-end SLR.