Search Results

Now showing 1 - 10 of 44
  • Item
    The Gaia-ESO Survey: Probing the lithium abundances in old metal-rich dwarf stars in the solar vicinity
    (Les Ulis : EDP Sciences, 2022) Dantas, M.L.L.; Guiglion, G.; Smiljanic, R.; Romano, D.; Magrini, L.; Bensby, T.; Chiappini, C.; Franciosini, E.; Nepal, S.; Tautvaišienė, G.; Gilmore, G.; Randich, S.; Lanzafame, A.C.; Heiter, U.; Morbidelli, L.; Prisinzano, L.; Zaggia, S.
    Context. Lithium (Li) is a fragile element that is produced in a variety of sites but can also be very easily depleted in stellar photospheres. Radial migration has been reported to explain the decrease in the upper envelope of Li measurements observed for relatively old metal-rich dwarf stars in some surveys. Aims. We test a scenario in which radial migration could affect the Li abundance pattern of dwarf stars in the solar neighbourhood. This may confirm that the Li abundances in these stars cannot serve as a probe for the Li abundance in the interstellar medium (ISM). In other words, to probe the evolution of the Li abundance in the local ISM, it is crucial that stellar intruders be identified and removed from the adopted sample. Methods. We used the high-quality data (including Li abundances) from the sixth internal Data Release of the Gaia-ESO survey. In this sample we grouped stars by similarity in chemical abundances via hierarchical clustering. Our analysis treats both measured Li abundances and upper limits. Results. The Li envelope of the previously identified radially migrated stars is well below the benchmark meteoritic value (<3.26 dex); the star with the highest detected abundance has A(Li) = 2.76 dex. This confirms the previous trends observed for old dwarf stars (median ages ~ 8 Gyr), where Li decreases for [Fe/H] ≳ 0. Conclusions. This result is supporting evidence that the abundance of Li measured in the upper envelope of old dwarf stars should not be considered a proxy for the ISM Li. Our scenario also indicates that the stellar yields for [M/H] >0 should not be decreased, as recently proposed in the literature. Our study backs recent studies that claim that old dwarfs on the hot side of the dip are efficient probes of the ISM abundance of Li, provided atomic diffusion does not significantly lower the initial Li abundance in the atmospheres of metal-rich objects.
  • Item
    MUSE crowded field 3D spectroscopy in NGC 300: III. Characterizing extremely faint HII regions and diffuse ionized gas
    (Les Ulis : EDP Sciences, 2022) Micheva, Genoveva; Roth, Martin M.; Weilbacher, Peter M.; Morisset, Christophe; Castro, Norberto; Monreal Ibero, Ana; Soemitro, Azlizan A.; Maseda, Michael V.; Steinmetz, Matthias; Brinchmann, Jarle
    Context. There are known differences between the physical properties of H II and diffuse ionized gas (DIG). However, most of the studied regions in the literature are relatively bright, with log10 L(Hα)[erg s-1] ≳37. Aims. We compiled an extremely faint sample of 390 H II regions with a median Hα luminosity of 34.7 in the flocculent spiral galaxy NGC 300, derived their physical properties in terms of metallicity, density, extinction, and kinematics, and performed a comparative analysis of the properties of the DIG. Methods. We used MUSE data of nine fields in NGC 300, covering a galactocentric distance of zero to ~450 arcsec (~4 projected kpc), including spiral arm and inter-arm regions. We binned the data in dendrogram leaves and extracted all strong nebular emission lines. We identified H II and DIG regions and compared their electron densities, metallicity, extinction, and kinematic properties. We also tested the effectiveness of unsupervised machine-learning algorithms in distinguishing between the H II and DIG regions. Results. The gas density in the H II and DIG regions is close to the low-density limit in all fields. The average velocity dispersion in the DIG is higher than in the H II regions, which can be explained by the DIG being 1.8 kK hotter than H II gas. The DIG manifests a lower ionization parameter than H II gas, and the DIG fractions vary between 15-77%, with strong evidence of a contribution by hot low-mass evolved stars and shocks to the DIG ionization. Most of the DIG is consistent with no extinction and an oxygen metallicity that is indistinguishable from that of the H II gas. We observe a flat metallicity profile in the central region of NGC 300, without a sign of a gradient. Conclusions. The differences between extremely faint H II and DIG regions follow the same trends and correlations as their much brighter cousins. Both types of objects are so heterogeneous, however, that the differences within each class are larger than the differences between the two classes.
  • Item
    Surface brightness-colour relations of dwarf stars from detached eclipsing binaries: I. Calibrating sample
    (Les Ulis : EDP Sciences, 2022) Graczyk, D.; Pietrzyński, G.; Galan, C.; Southworth, J.; Gieren, W.; Kałuszyński, M.; Zgirski, B.; Gallenne, A.; Górski, M.; Hajdu, G.; Karczmarek, P.; Kervella, P.; Maxted, P. F. L.; Nardetto, N.; Narloch, W.; Pilecki, B.; Pych, W.; Rojas Garcia, G.; Storm, J.; Suchomska, K.; Taormina, M.; Wielgórski, P.
    Aims. Surface brightness - colour relations (SBCRs) are very useful tools for predicting the angular diameters of stars. They offer the possibility to calculate very precise spectrophotometric distances by the eclipsing binary method or the Baade-Wesselink method. Double-lined Detached Eclipsing Binary stars (SB2 DEBs) with precisely known trigonometric parallaxes allow for a calibration of SBCRs with unprecedented precision. In order to improve such calibrations, it is important to enlarge the calibration sample of suitable eclipsing binaries with very precisely determined physical parameters. Methods. We carefully chose a sample of ten SB2 DEBs in the solar neighbourhood which contain inactive main-sequence components. The components have spectral types from early A to early K. All systems have high-precision parallaxes from the Gaia mission. We analysed high precision ground- and space-based photometry simultaneously with the radial velocity curves derived from HARPS spectra. We used spectral disentangling to obtain the individual spectra of the components and used these to derive precise atmospheric parameters and chemical abundances. For almost all components, we derived precise surface temperatures and metallicities. Results. We derived absolute dimensions for 20 stars with an average precision of 0.2% and 0.5% for masses and radii, respectively. Three systems show slow apsidal motion. One system, HD 32129, is most likely a triple system with a much fainter K6V companion. Also three systems contain metallic-line components and show strong enhancements of barium and ittrium. Conclusions. The components of all systems compare well to the SBCR derived before from the detached eclipsing binary stars. With a possible exception of HD 32129, they can be used to calibrate SBCRs with a precision better than 1% with available Gaia DR3 parallaxes.
  • Item
    Absolute dimensions and apsidal motion of the eclipsing binaries V889 Aquilae and V402 Lacertae
    (Les Ulis : EDP Sciences, 2022) Baroch, D.; Giménez, A.; Morales, J. C.; Ribas, I.; Herrero, E.; Perdelwitz, V.; Jordi, C.; Granzer, T.; Allende Prieto, C.
    Context. Double-lined eclipsing binaries allow the direct determination of masses and radii, which are key for testing stellar models. With the launch of the TESS mission, many well-known eclipsing binaries have been observed at higher photometric precision, permitting the improvement of the absolute dimension determinations. Aims. Using TESS data and newly obtained spectroscopic observations, we aim to determine the masses and radii of the eccentric eclipsing binary systems V889 Aql and V402 Lac, together with their apsidal motion parameters. Methods. We simultaneously modelled radial velocity curves and times of eclipse for each target to precisely determine the orbital parameters of the systems, which we used to analyse the light curves and then obtain their absolute dimensions. We compared the obtained values with those predicted by theoretical models. Results. We determined masses and radii of the components of both systems with relative uncertainties lower than 2%. V889 Aql is composed of two stars with masses 2:17±0:02 M⊙ and 2:13±0:01 M⊙ and radii 1:87±0:04 R⊙ and 1:85±0:04 R⊙.We find conclusive evidence of the presence of a third body orbiting V889 Aql with a period of 67 yr. Based on the detected third light and the absence of signal in the spectra, we suggest that this third body could in turn be a binary composed of two ±1.4 M⊙ stars. V402 Lac is composed of two stars with masses 2:80 ± 0:05 M⊙ and 2:78 ± 0:05 M⊙ and radii 2:38 ± 0:03 R⊙ and 2:36 ± 0:03 R⊙. The times of minimum light are compatible with the presence of a third body for this system too, although its period is not yet fully sampled. In both cases we have found a good agreement between the observed apsidal motion rates and the model predictions.
  • Item
    X-ray emission from a rapidly accreting narrow-line Seyfert 1 galaxy at z = 6.56
    (Les Ulis : EDP Sciences, 2023) Wolf, J.; Nandra, K.; Salvato, M.; Buchner, J.; Onoue, M.; Liu, T.; Arcodia, R.; Merloni, A.; Ciroi, S.; Di Mille, F.; Burwitz, V.; Brusa, M.; Ishimoto, R.; Kashikawa, N.; Matsuoka, Y.; Urrutia, T.; Waddell, S.G.H.
    The space density of X-ray-luminous, blindly selected active galactic nuclei (AGN) traces the population of rapidly accreting super-massive black holes through cosmic time. It is encoded in the X-ray luminosity function, whose bright end remains poorly constrained in the first billion years after the Big Bang as X-ray surveys have thus far lacked the required cosmological volume. With the eROSITA Final Equatorial-Depth Survey (eFEDS), the largest contiguous and homogeneous X-ray survey to date, X-ray AGN population studies can now be extended to new regions of the luminosity-redshift space (L2-10 keV > 1045 erg s-1 and z > 6). Aims. The current study aims at identifying luminous quasars at z > 5:7 among X-ray-selected sources in the eFEDS field in order to place a lower limit on black hole accretion well into the epoch of re-ionisation. A secondary goal is the characterisation of the physical properties of these extreme coronal emitters at high redshifts. Methods. Cross-matching eFEDS catalogue sources to optical counterparts from the DESI Legacy Imaging Surveys, we confirm the low significance detection with eROSITA of a previously known, optically faint z = 6:56 quasar from the Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs) survey. We obtained a pointed follow-up observation of the source with the Chandra X-ray telescope in order to confirm the low-significance eROSITA detection. Using new near-infrared spectroscopy, we derived the physical properties of the super-massive black hole. Finally, we used this detection to infer a lower limit on the black hole accretion density rate at z > 6. Results. The Chandra observation confirms the eFEDS source as the most distant blind X-ray detection to date. The derived X-ray luminosity is high with respect to the rest-frame optical emission of the quasar.With a narrow Mgii line, low derived black hole mass, and high Eddington ratio, as well as its steep photon index, the source shows properties that are similar to local narrow-line Seyfert 1 galaxies, which are thought to be powered by young super-massive black holes. In combination with a previous high-redshift quasar detection in the field, we show that quasars with L2-10 keV > 1045 erg s-1 dominate accretion onto super-massive black holes at z _ 6.
  • Item
    Deciphering the extreme X-ray variability of the nuclear transient eRASSt J045650.3-203750: A likely repeating partial tidal disruption event
    (Les Ulis : EDP Sciences, 2023) Liu, Z.; Malyali, A.; Krumpe, M.; Homan, D.; Goodwin, A.J.; Grotova, I.; Kawka, A.; Rau, A.; Merloni, A.; Anderson, G.E.; Miller-Jones, J.C.A.; Markowitz, A.G.; Ciroi, S.; Di Mille, F.; Schramm, M.; Tang, S.; Buckley, D.A.H.; Gromadzki, M.; Jin, C.; Buchner, J.
    Context. During its all-sky survey, the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Spectrum-Roentgen-Gamma (SRG) observatory has uncovered a growing number of X-ray transients associated with the nuclei of quiescent galaxies. Benefitting from its large field of view and excellent sensitivity, the eROSITA window into time-domain X-ray astrophysics yields a valuable sample of X-ray selected nuclear transients. Multi-wavelength follow-up enables us to gain new insights into understanding the nature and emission mechanism of these phenomena. Aims. We present the results of a detailed multi-wavelength analysis of an exceptional repeating X-ray nuclear transient, eRASSt J045650.3-203750 (hereafter J0456-20), uncovered by SRG/eROSITA in a quiescent galaxy at a redshift of z ∼ 0:077. We aim to understand the radiation mechanism at different luminosity states of J0456-20, and provide further evidence that similar accretion processes are at work for black hole accretion systems at different black hole mass scales. Methods. We describe our temporal analysis, which addressed both the long- and short-term variability of J0456-20. A detailed X-ray spectral analysis was performed to investigate the X-ray emission mechanism. Results. Our main findings are that (1) J0456-20 cycles through four distinctive phases defined based on its X-ray variability: an X-ray rising phase leading to an X-ray plateau phase that lasts for abouttwo months. This is terminated by a rapid X-ray flux drop phase during which the X-ray flux can drop drastically by more than a factor of 100 within one week, followed by an X-ray faint state for about two months before the X-ray rising phase starts again. (2) The X-ray spectra are generally soft in the rising phase, with a photon index & 3:0, and they become harder as the X-ray flux increases. There is evidence of a multi-colour disk with a temperature of Tin ∼ 70 eV in the inner region at the beginning of the X-ray rising phase. The high-quality XMM-Newton data suggest that a warm and hot corona might cause the X-ray emission through inverse Comptonisation of soft disk seed photons during the plateau phase and at the bright end of the rising phase. (3) J0456-20 shows only moderate UV variability and no significant optical variability above the host galaxy level. Optical spectra taken at different X-ray phases are constant in time and consistent with a typical quiescent galaxy with no indication of emission lines. (4) Radio emission is (as yet) only detected in the X-ray plateau phase and rapidly declines on a timescale of two weeks. Conclusions. J0456-20 is likely a repeating nuclear transient with a tentative recurrence time of ∼223 days. It is a new member of this rare class. We discuss several possibilities to explain the observational properties of J0456-20. We currently favour a repeating partial tidal disruption event as the most likely scenario. The long-term X-ray evolution is explained as a transition between a thermal disk-dominated soft state and a steep power-law state. This implies that the corona can be formed within a few months and is destroyed within a few weeks.
  • Item
    Identifying the energy release site in a solar microflare with a jet
    (Les Ulis : EDP Sciences, 2023) Battaglia, Andrea Francesco; Wang, Wen; Saqri, Jonas; Podladchikova, Tatiana; Veronig, Astrid M.; Collier, Hannah; Dickson, Ewan C. M.; Podladchikova, Olena; Monstein, Christian; Warmuth, Alexander; Schuller, Frédéric; Harra, Louise; Krucker, Säm
    Context. One of the main science questions of the Solar Orbiter and Parker Solar Probe missions deals with understanding how electrons in the lower solar corona are accelerated and how they subsequently access interplanetary space. Aims. We aim to investigate the electron acceleration and energy release sites as well as the manner in which accelerated electrons access the interplanetary space in the case of the SOL2021-02-18T18:05 event, a GOES A8 class microflare associated with a coronal jet. Methods. This study takes advantage of three different vantage points, Solar Orbiter, STEREO-A, and Earth, with observations drawn from eight different instruments, ranging from radio to X-ray. Multi-wavelength timing analysis combined with UV/EUV imagery and X-ray spectroscopy by Solar Orbiter/STIX (Spectrometer/Telescope for Imaging X-rays) is used to investigate the origin of the observed emission during different flare phases. Results. The event under investigation satisfies the classical picture of the onset time of the acceleration of electrons coinciding with the jet and the radio type III bursts. This microflare features prominent hard X-ray (HXR) nonthermal emission down to at least 10 keV and a spectrum that is much harder than usual for a microflare with γ = 2.9 ± 0.3. From Eartha's vantage point, the microflare is seen near the limb, revealing the coronal energy release site above the flare loop in EUV, which, from STIX spectroscopic analysis, turns out to be hot (i.e., at roughly the same temperature of the flare). Moreover, this region is moving toward higher altitudes over time (∼30akmas-1). During the flare, the same region spatially coincides with the origin of the coronal jet. Three-dimensional (3D) stereoscopic reconstructions of the propagating jet highlight that the ejected plasma moves along a curved trajectory. Conclusions. Within the framework of the interchange reconnection model, we conclude that the energy release site observed above-The-loop corresponds to the electron acceleration site, corroborating that interchange reconnection is a viable candidate for particle acceleration in the low corona on field lines open to interplanetary space.
  • Item
    The SEDIGISM survey: The influence of spiral arms on the molecular gas distribution of the inner Milky Way
    (Les Ulis : EDP Sciences, 2022) Colombo, D.; Duarte-Cabral, A.; Pettitt, A.R.; Urquhart, J. S.; Wyrowski, F.; Csengeri, T.; Neralwar, K.R.; Schuller, F.; Menten, K.M.; Anderson, L.; Barnes, P.; Beuther, H.; Bronfman, L.; Eden, D.; Ginsburg, A.; Henning, T.; König, C.; Lee, M.-Y.; Mattern, M.; Medina, S.; Ragan, S.E.; Rigby, A. J.; Sánchez-Monge, Á.; Traficante, A.; Yang, A. Y.; Wienen, M.
    The morphology of the Milky Way is still a matter of debate. In order to shed light on uncertainties surrounding the structure of the Galaxy, in this paper, we study the imprint of spiral arms on the distribution and properties of its molecular gas. To do so, we take full advantage of the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic Interstellar Medium) survey that observed a large area of the inner Galaxy in the 13CO (2-1) line at an angular resolution of 28′′. We analyse the influences of the spiral arms by considering the features of the molecular gas emission as a whole across the longitude-velocity map built from the full survey. Additionally, we examine the properties of the molecular clouds in the spiral arms compared to the properties of their counterparts in the inter-arm regions. Through flux and luminosity probability distribution functions, we find that the molecular gas emission associated with the spiral arms does not differ significantly from the emission between the arms. On average, spiral arms show masses per unit length of ~105-106 M⊙ kpc-1. This is similar to values inferred from data sets in which emission distributions were segmented into molecular clouds. By examining the cloud distribution across the Galactic plane, we infer that the molecular mass in the spiral arms is a factor of 1.5 higher than that of the inter-arm medium, similar to what is found for other spiral galaxies in the local Universe. We observe that only the distributions of cloud mass surface densities and aspect ratio in the spiral arms show significant differences compared to those of the inter-arm medium; other observed differences appear instead to be driven by a distance bias. By comparing our results with simulations and observations of nearby galaxies, we conclude that the measured quantities would classify the Milky Way as a flocculent spiral galaxy, rather than as a grand-design one.
  • Item
    Warm ionized gas in the blue compact galaxy Haro 14 viewed by MUSE
    (Les Ulis : EDP Sciences, 2022) Cairós, L. M.; González-Pérez, J.N.; Weilbacher, P.M.; Manso Sainz, R.
    We investigate the warm ionized gas in the blue compact galaxy (BCG) Haro 14 by means of integral field spectroscopic observations taken with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope. The large field of view of MUSE and its unprecedented sensitivity enable observations of the galaxy nebular emission up to large galactocentric distances, even in the important but very faint [O i] λ6300 diagnostic line. This allowed us to trace the ionized gas morphology and ionization structure of Haro 14 up to kiloparsec scales and, for the first time, to accurately investigate the excitation mechanism operating in the outskirts of a typical BCG. The intensity and diagnostic maps reveal at least two highly distinct components of ionized gas: the bright central regions, mostly made of individual clumps, and a faint component which extends up to kiloparsec scales and consists of widespread diffuse emission, well-delineated filamentary structures, and faint knots. Noteworthy are the two curvilinear filaments extending up to 2 and 2.3 kpc southwest, which likely trace the edges of supergiant expanding bubbles driven by galactic outflows. We find that while the central clumps in Haro 14 are Hii-region complexes, the morphology and line ratios of the whole low-surface-brightness component are not compatible with star formation photoionization. In the spatially resolved emission-line-ratio diagnostic diagrams, spaxels above the maximum starburst line form the majority (∼75% and ∼50% in the diagnostic diagrams involving [O i] and [S ii] respectively). Moreover, our findings suggest that more than one alternative mechanism is ionizing the outer galaxy regions. The properties of the diffiuse component are consistent with ionization by diluted radiation and the large filaments and shells are most probably shocked areas at the edge of bubbles. The mechanism responsible for the ionization of the faint individual clumps observed in the galaxy periphery is more difficult to assess. These clumps could be the shocked debris of fragmented shells or regions where star formation is proceeding under extreme conditions.
  • Item
    Effects of solar evolution on finite acquisition time of Fabry-Perot interferometers in high resolution solar physics
    (Les Ulis : EDP Sciences, 2023) Schlichenmaier, R.; Pitters, D.; Borrero, J.M.; Schubert, M.
    Context. The Visible Tunable Filter (VTF) imaging spectropolarimeter will be operated at the Daniel K. Inouye Solar Telescope (DKIST) in Hawaii. Due to its capability in resolving dynamic fine structure of smaller than 0.05 arcsec, the finite acquisition time of typically 11 s affects the measurement process and potentially causes errors in deduced physical parameters. Aims. We estimate these errors and investigate ways of minimising them. Methods. We mimicked the solar surface using a magnetohydrodynamic simulation with a spatially averaged vertical field strength of 200 G. We simulated the measurement process scanning through successive wavelength points with a temporal cadence of 1 s. We synthesised Fe 1617.3 nm for corresponding snapshots. In addition to the classical composition of the line profile, we introduce a novel method where the intensity in each wavelength point is normalised using the simultaneous continuum intensity, and then multiplied by the temporal mean of the continuum intensity. Milne-Eddington inversions were used to infer the line-of-sight velocity, vlos, and the vertical (longitudinal) component of the magnetic field, Blos. Results. We quantify systematic errors, defining the temporal average of the simulation during the measurement as the truth. We find that with the classical composition of the line profiles, errors exceed the sensitivity for vlos, and in filigree regions also for Blos. The novel method that includes normalisation reduces the measurement errors in all cases. Spatial binning without reducing the acquisition time decreases the measurement error slightly. Conclusions. The evolutionary timescale in inter-granular lanes, in particular in areas with magnetic features (filigree), is shorter than the timescale within granules. Hence, depending on the science objective, fewer accumulations could be used for strong magnetic field in inter-granular lanes and more accumulations could be used for the weak granular magnetic fields. As a key result of this investigation, we suggest including the novel method of normalisation in corresponding data pipelines.