Search Results

Now showing 1 - 6 of 6
  • Item
    An Approach to Evaluate User Interfaces in a Scholarly Knowledge Communication Domain
    (Cham : Springer, 2023) Obrezkov, Denis; Oelen, Allard; Auer, Sören; Abdelnour-Nocera, José L.; Marta Lárusdóttir; Petrie, Helen; Piccinno, Antonio; Winckler, Marco
    The amount of research articles produced every day is overwhelming: scholarly knowledge is getting harder to communicate and easier to get lost. A possible solution is to represent the information in knowledge graphs: structures representing knowledge in networks of entities, their semantic types, and relationships between them. But this solution has its own drawback: given its very specific task, it requires new methods for designing and evaluating user interfaces. In this paper, we propose an approach for user interface evaluation in the knowledge communication domain. We base our methodology on the well-established Cognitive Walkthough approach but employ a different set of questions, tailoring the method towards domain-specific needs. We demonstrate our approach on a scholarly knowledge graph implementation called Open Research Knowledge Graph (ORKG).
  • Item
    Using Learning Analytics to Identify Student Learning Profiles for Software Development Courses
    (New York, NY : Association for Computing Machinery, 2023) Söchtig, Philipp; Apel, Sebastian; Windisch, Hans-Michael; Mottok, Jürgen
    Often lecturers encounter the problem of not knowing how students use the course materials during a semester. In our approach we devised a web-based system that presents all learning materials in a digital format, allowing us to record student learning activities. The recorded usage data enabled extensive analyses of student learning behaviour which can support lecturers with improving the materials as well as understanding students’ learning material preferences and learning profiles, which can be composed by combining different usage modes depending on the material used. For the lectures we analysed, a higher success in the exam can be correlated to higher usage of the learning material according to our research data. Furthermore, student preferences regarding the form of presentation (f.e. slides over videos) could also be seen.
  • Item
    Genealogical properties of spatial models in Population Genetics
    (Hannover : Technische Informationsbibliothek, 2023-09) Wirtz, Johannes
    At the interface between Phylo- and Population Genetics, and recently heavily inspired by Epidemonology, the discipline of Phylogeography comprises modelling techniques from classical theoretical biology and combines them with a spatial (2D or 3D) aspect, with the purpose of utilizing geographical information in the analysis to understand the evolutionary history of a biological system or aspects of virology such as directionality and seasonality in pandemic outbreaks [1, 2, 3, 4]. An prime example of this are datasets that take into account the sampling locations of its components (geo-referenced genomic data). In this project, we have focused on the model called "spatial Lambda-Fleming-Viot process" ( V [5, 6]) and analzed its statistical properties forward in time as well as in the ancestral (dual) process, with results that may be used for parameter inference. Of particlar interest was the spatial variance, denoted , a parameter controlling the speed at which genetic information is spread across space and therefore an analog of the reproduction number (R0) used in epidemonology e.g. to assess the infectiousness of differing viral strains. We explored the relation of this parameter to the time to coalescence between lineage pairs in this model and described methods of estimating it from sampled data under different circumstances. We have furthermore investigated similarities and differences between this model and classical models in Population Genetics, particularly Birth-Death processes, which are heavily used for all kinds of biological inference problems, but do not by themselves feature a spatial component. We compared the Vto a variant of the Birth-Death process where the location of a live individual changes over the course of its lifetime according to a Brownian motion. This process is not as easily viewed backward in time as the V, but the genalogical process is accessible by Markov-Chain Monte Carlosimulation, as the likelihoods of ancestral positions and branch lengths are easily calculated, making this model easily applicable to data. Our analysis highlights the analogy between the two processes forward in time as well as backward in time; on the other hand, we also observed a divergent behavior of the two models when no prior on the phylogenetic time scale was assumed. Lastly, this project has given rise to a study of combinatorial properties of tree shapes relevant to the V, the Birth-Death and other biological processes. In particular, we were able to identify the combinatorial class genealogical trees generated from these processes belong to and verify a conjecture regarding their enumeration. Preliminary versions of software tools for the aforementioned inference have also been provided.
  • Item
    Geometric Basics and Calculation Methods for the Design of a Technical Saddle Joint based on Owl Neck Vertebrae
    (Amsterdam [u.a.] : Elsevier, 2023) Gründer, Johannes; Hornfeck, Rüdiger
    A saddle joint enables the movement of two components relative to each other primarily about two axes of rotation and, to a limited extent, in translational direction. This type of joint is primarily found in nature, for example in the human thumb, in the ossicles and the cervical spine of owls. Motivated by the high degree of the owls’ head mobility, the authors aim to make this high motion potential technically accessible by defining relevant design parameters and developing calculation methods for dimensioning the saddle joint components. First, an abstracted contact geometry model based on the owls’ saddle joints is de-fined. A method for calculating the kinematics of the joint as a function of the previously introduced design parameters of the contact is derived mathematically. Regarding the implementation in a design process, this model is used to calculate the restoring forces required to stabilize the joint parts as well as the actuator torque needed for a specific rotational movement around those axes. Furthermore, the rotational stiffness of a specific joint geometry is calculated as an important design criterion. In summary, the defined contact geometry, the kinematics, and the computable forces serve as basis for designing technical saddle joints in the future.
  • Item
    Development and Implementation of a Guideline for the Combination of Additively Manufactured Joint Assemblies with Wire Actuators made of Shape Memory Alloys
    (Amsterdam [u.a.] : Elsevier, 2023) Löffler, Robin; Tremmel, Stephan; Hornfeck, Rüdiger
    Smart Materials actuators in the form of wires made of shape memory alloys in combination with additively manufactured carrier components are used in a wide variety of prototype developments of innovative joint assemblies. This combination is relevant because of the same manufacturing costs of the additively manufactured components, which are independent of the quantity of parts, the free geometric design possibilities as well as the huge energy density of the aforementioned actuator technology. In particular, the focus is on the possibility of appropriately fitting large wire lengths on a compact part volume while taking into account acceptable force losses. Since there is no design guideline for such joint developments, each is individual, which results in unnecessarily long development times and a higher risk of errors. Based on selected in-house and third-party examples, integration possibilities of shape memory alloy wire actuators in additively manufactured carrier components are analysed and transferred into a universally applicable design guideline. These recommendations are brought into the framework of existing design guidelines of the VDI (Verein Deutscher Ingenieure – Association of German Engineers), namely VDI 2206 and VDI 2221 with extensions for additive manufacturing, for a better usability and integrability into existing processes. Finally, this results in a simplified access to the topic of the combination of additive manufacturing and shape memory alloys and a more efficient realisation of such joint developments.
  • Item
    Abschlussbericht für die Deutsche Forschungsgemeinschaft zum DFG-Forschungsvorhaben DE 447/184-1: Einsatzverhalten sintermetallischer Diamantschleifscheiben mit chemisch angebundenen Schleifkörnern
    (Hannover : Technische Informationsbibliothek, 2023-10-23) Lang, Roman; Bergmann, Benjamin; Denkena, Berend
    [no abstract available]