Search Results

Now showing 1 - 6 of 6
  • Item
    Single-Polymer Friction Force Microscopy of dsDNA Interacting with a Nanoporous Membrane
    (Washington, DC : ACS Publ., 2023) Schellnhuber, Kordula; Blass, Johanna; Hübner, Hanna; Gallei, Markus; Bennewitz, Roland
    Surface-grafted polymers can reduce friction between solids in liquids by compensating the normal load with osmotic pressure, but they can also contribute to friction when fluctuating polymers entangle with the sliding counter face. We have measured forces acting on a single fluctuating double-stranded DNA polymer, which is attached to the tip of an atomic force microscope and interacts intermittently with nanometer-scale methylated pores of a self-assembled polystyrene-block-poly(4-vinylpyridine) membrane. Rare binding of the polymer into the pores is followed by a stretching of the polymer between the laterally moving tip and the surface and by a force-induced detachment. We present results for the velocity dependence of detachment forces and of attachment frequency and discuss them in terms of rare excursions of the polymer beyond its equilibrium configuration.
  • Item
    Self-assembly of Co/Pt stripes with current-induced domain wall motion towards 3D racetrack devices
    ([London] : Nature Publishing Group UK, 2024) Fedorov, Pavel; Soldatov, Ivan; Neu, Volker; Schäfer, Rudolf; Schmidt, Oliver G.; Karnaushenko, Daniil
    Modification of the magnetic properties under the induced strain and curvature is a promising avenue to build three-dimensional magnetic devices, based on the domain wall motion. So far, most of the studies with 3D magnetic structures were performed in the helixes and nanowires, mainly with stationary domain walls. In this study, we demonstrate the impact of 3D geometry, strain and curvature on the current-induced domain wall motion and spin-orbital torque efficiency in the heterostructure, realized via a self-assembly rolling technique on a polymeric platform. We introduce a complete 3D memory unit with write, read and store functionality, all based on the field-free domain wall motion. Additionally, we conducted a comparative analysis between 2D and 3D structures, particularly addressing the influence of heat during the electric current pulse sequences. Finally, we demonstrated a remarkable increase of 30% in spin-torque efficiency in 3D configuration.
  • Item
    Reversibly growing crosslinked polymers with programmable sizes and properties
    ([London] : Nature Publishing Group UK, 2023) Zhou, Xiaozhuang; Zheng, Yijun; Zhang, Haohui; Yang, Li; Cui, Yubo; Krishnan, Baiju P.; Dong, Shihua; Aizenberg, Michael; Xiong, Xinhong; Hu, Yuhang; Aizenberg, Joanna; Cui, Jiaxi
    Growth constitutes a powerful method to post-modulate materials’ structures and functions without compromising their mechanical performance for sustainable use, but the process is irreversible. To address this issue, we here report a growing-degrowing strategy that enables thermosetting materials to either absorb or release components for continuously changing their sizes, shapes, compositions, and a set of properties simultaneously. The strategy is based on the monomer-polymer equilibrium of networks in which supplying or removing small polymerizable components would drive the networks toward expansion or contraction. Using acid-catalyzed equilibration of siloxane as an example, we demonstrate that the size and mechanical properties of the resulting silicone materials can be significantly or finely tuned in both directions of growth and decomposition. The equilibration can be turned off to yield stable products or reactivated again. During the degrowing-growing circle, material structures are selectively varied either uniformly or heterogeneously, by the availability of fillers. Our strategy endows the materials with many appealing capabilities including environment adaptivity, self-healing, and switchability of surface morphologies, shapes, and optical properties. Since monomer-polymer equilibration exists in many polymers, we envision the expansion of the presented strategy to various systems for many applications.
  • Item
    Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries
    ([London] : Nature Publishing Group UK, 2023) Sabaghi, Davood; Wang, Zhiyong; Bhauriyal, Preeti; Lu, Qiongqiong; Morag, Ahiud; Mikhailovia, Daria; Hashemi, Payam; Li, Dongqi; Neumann, Christof; Liao, Zhongquan; Dominic, Anna Maria; Nia, Ali Shaygan; Dong, Renhao; Zschech, Ehrenfried; Turchanin, Andrey; Heine, Thomas; Yu, Minghao; Feng, Xinliang
    The anion-intercalation chemistries of graphite have the potential to construct batteries with promising energy and power breakthroughs. Here, we report the use of an ultrathin, positively charged two-dimensional poly(pyridinium salt) membrane (C2DP) as the graphite electrode skin to overcome the critical durability problem. Large-area C2DP enables the conformal coating on the graphite electrode, remarkably alleviating the electrolyte. Meanwhile, the dense face-on oriented single crystals with ultrathin thickness and cationic backbones allow C2DP with high anion-transport capability and selectivity. Such desirable anion-transport properties of C2DP prevent the cation/solvent co-intercalation into the graphite electrode and suppress the consequent structure collapse. An impressive PF6−-intercalation durability is demonstrated for the C2DP-covered graphite electrode, with capacity retention of 92.8% after 1000 cycles at 1 C and Coulombic efficiencies of > 99%. The feasibility of constructing artificial ion-regulating electrode skins with precisely customized two-dimensional polymers offers viable means to promote problematic battery chemistries.
  • Item
    Simultaneous Treatment of Both Sides of the Polymer with a Conical-Shaped Atmospheric Pressure Plasma Jet
    (Basel : MDPI, 2023) Kodaira, Felipe Vicente de Paula; Leal, Bruno Henrique Silva; Tavares, Thayna Fernandes; Quade, Antje; Hein, Luis Rogerio de Oliveira; Chiappim, William; Kostov, Konstantin Georgiev
    A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.
  • Item
    Simultaneous Treatment of Both Sides of the Polymer with a Conical-Shaped Atmospheric Pressure Plasma Jet
    (Basel : MDPI, 2023) Kodaira, Felipe Vicente de Paula; Leal, Bruno Henrique Silva; Tavares, Thayna Fernandes; Quade, Antje; Hein, Luis Rogerio de Oliveira; Chiappim, William; Kostov, Konstantin Georgiev
    A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.