Search Results

Now showing 1 - 10 of 122
  • Item
    Synthesis and Characterization of Oxide Chloride Sr2VO3Cl, a Layered S = 1 Compound
    (Washington, DC : ACS Publications, 2023) Sannes, Johnny A.; Kizhake Malayil, Ranjith K.; Corredor, Laura T.; Wolter, Anja U. B.; Grafe, Hans-Joachim; Valldor, Martin
    The mixed-anion compound with composition Sr2VO3Cl has been synthesized for the first time, using the conventional high-temperature solid-state synthesis technique in a closed silica ampule under inert conditions. This compound belongs to the known Sr2TmO3Cl (Tm = Sc, Mn, Fe, Co, Ni) family, but with Tm = V. All homologues within this family can be described with the tetragonal space group P4/nmm (No. 129); from a Rietveld refinement of powder X-ray diffraction data on the Tm = V homologue, the unit cell parameters were determined to a = 3.95974(8) and c = 14.0660(4) Å, and the atomic parameters in the crystal structure could be estimated. The synthesized powder is black, implying that the compound is a semiconductor. The magnetic investigations suggest that Sr2VO3Cl is a paramagnet at high temperatures, exhibiting a μeff = 2.0 μB V-1 and antiferromagnetic (AFM) interactions between the magnetic vanadium spins (θCW = −50 K), in line with the V-O-V advantageous super-exchange paths in the V-O layers. Specific heat capacity studies indicate two small anomalies around 5 and 35 K, which however are not associated with long-range magnetic ordering. 35Cl ss-NMR investigations suggest a slow spin freezing below 4.2 K resulting in a glassy-like spin ground state.
  • Item
    Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2
    (Melville, NY : AIP Publ., 2023) Tschirner, Teresa; Keßler, Philipp; Gonzalez Betancourt, Ruben Dario; Kotte, Tommy; Kriegner, Dominik; Büchner, Bernd; Dufouleur, Joseph; Kamp, Martin; Jovic, Vedran; Smejkal, Libor; Sinova, Jairo; Claessen, Ralph; Jungwirth, Tomas; Moser, Simon; Reichlova, Helena; Veyrat, Louis
    Observations of the anomalous Hall effect in RuO2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe, the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2 is excluded by symmetry for the Néel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the Néel vector from the easy-axis toward the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2 thin-film samples, whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field Hc ≃ 55 T that was inaccessible in earlier studies but is consistent with the expected Néel-vector reorientation field.
  • Item
    Amorphous-Like Ultralow Thermal Transport in Crystalline Argyrodite Cu7PS6
    (Weinheim : Wiley-VCH, 2024) Shen, Xingchen; Ouyang, Niuchang; Huang, Yuling; Tung, Yung‐Hsiang; Yang, Chun‐Chuen; Faizan, Muhammad; Perez, Nicolas; He, Ran; Sotnikov, Andrei; Willa, Kristin; Wang, Chen; Chen, Yue; Guilmeau, Emmanuel
    Due to their amorphous-like ultralow lattice thermal conductivity both below and above the superionic phase transition, crystalline Cu- and Ag-based superionic argyrodites have garnered widespread attention as promising thermoelectric materials. However, despite their intriguing properties, quantifying their lattice thermal conductivities and a comprehensive understanding of the microscopic dynamics that drive these extraordinary properties are still lacking. Here, an integrated experimental and theoretical approach is adopted to reveal the presence of Cu-dominated low-energy optical phonons in the Cu-based argyrodite Cu7PS6. These phonons yield strong acoustic-optical phonon scattering through avoided crossing, enabling ultralow lattice thermal conductivity. The Unified Theory of thermal transport is employed to analyze heat conduction and successfully reproduce the experimental amorphous-like ultralow lattice thermal conductivities, ranging from 0.43 to 0.58 W m−1 K−1, in the temperature range of 100–400 K. The study reveals that the amorphous-like ultralow thermal conductivity of Cu7PS6 stems from a significantly dominant wave-like conduction mechanism. Moreover, the simulations elucidate the wave-like thermal transport mainly results from the contribution of Cu-associated low-energy overlapping optical phonons. This study highlights the crucial role of low-energy and overlapping optical modes in facilitating amorphous-like ultralow thermal transport, providing a thorough understanding of the underlying complex dynamics of argyrodites.
  • Item
    Symmetry‐Induced Selective Excitation of Topological States in Su–Schrieffer–Heeger Waveguide Arrays
    (Weinheim : Wiley-VCH, 2023) Tang, Min; Wang, Jiawei; Valligatla, Sreeramulu; Saggau, Christian N.; Dong, Haiyun; Saei Ghareh Naz, Ehsan; Klembt, Sebastian; Lee, Ching Hua; Thomale, Ronny; van den Brink, Jeroen; Fulga, Ion Cosma; Schmidt, Oliver G.; Ma, Libo
    The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Herein, the topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su–Schrieffer–Heeger mirror symmetric waveguides is reported. The transition of TZMs is realized by adjusting the coupling ratio between neighboring waveguide pairs, which is enabled by selective modulation of the refractive index in the waveguide gaps. Bidirectional topological transitions between symmetric and antisymmetric TZMs can be achieved with proposed switching strategy. Selective excitation of topological edge mode is demonstrated owing to the symmetry characteristics of the TZMs. The flexible manipulation of topological states is promising for on-chip light flow control and may spark further investigations on symmetric/antisymmetric TZM transitions in other photonic topological frameworks.
  • Item
    Nd─Nd Bond in Ih and D5h Cage Isomers of Nd2@C80 Stabilized by Electrophilic CF3 Addition
    (Weinheim : Wiley-VCH, 2023) Yang, Wei; Velkos, Georgios; Rosenkranz, Marco; Schiemenz, Sandra; Liu, Fupin; Popov, Alexey A.
    Synthesis of molecular compounds with metal–metal bonds between 4f elements is recognized as one of the fascinating milestones in lanthanide metallochemistry. The main focus of such studies is on heavy lanthanides due to the interest in their magnetism, while bonding between light lanthanides remains unexplored. In this work, the Nd─Nd bonding in Nd-dimetallofullerenes as a case study of metal–metal bonding between early lanthanides is demonstrated. Combined experimental and computational study proves that pristine Nd2@C80 has an open shell structure with a single electron occupying the Nd─Nd bonding orbital. Nd2@C80 is stabilized by a one-electron reduction and further by the electrophilic CF3 addition to [Nd2@C80]−. Single-crystal X-ray diffraction reveals the formation of two Nd2@C80(CF3) isomers with D5h-C80 and Ih-C80 carbon cages, both featuring a single-electron Nd─Nd bond with the length of 3.78–3.79 Å. The mutual influence of the exohedral CF3 group and endohedral metal dimer in determining the molecular structure of the adducts is analyzed. Unlike Tb or Dy analogs, which are strong single-molecule magnets with high blocking temperature of magnetization, the slow relaxation of magnetization in Nd2@Ih-C80(CF3) is detectable via out-of-phase magnetic susceptibility only below 3 K and in the presence of magnetic field.
  • Item
    Elucidating Structure Formation in Highly Oriented Triple Cation Perovskite Films
    (Weinheim : Wiley-VCH, 2023) Telschow, Oscar; Scheffczyk, Niels; Hinderhofer, Alexander; Merten, Lena; Kneschaurek, Ekaterina; Bertram, Florian; Zhou, Qi; Löffler, Markus; Schreiber, Frank; Paulus, Fabian; Vaynzof, Yana
    Metal halide perovskites are an emerging class of crystalline semiconductors of great interest for application in optoelectronics. Their properties are dictated not only by their composition, but also by their crystalline structure and microstructure. While significant efforts are dedicated to the development of strategies for microstructural control, significantly less is known about the processes that govern the formation of their crystalline structure in thin films, in particular in the context of crystalline orientation. This work investigates the formation of highly oriented triple cation perovskite films fabricated by utilizing a range of alcohols as an antisolvent. Examining the film formation by in situ grazing-incidence wide-angle X-ray scattering reveals the presence of a short-lived highly oriented crystalline intermediate, which is identified as FAI-PbI2-xDMSO. The intermediate phase templates the crystallization of the perovskite layer, resulting in highly oriented perovskite layers. The formation of this dimethylsulfoxide (DMSO) containing intermediate is triggered by the selective removal of N,N-dimethylformamide (DMF) when alcohols are used as an antisolvent, consequently leading to differing degrees of orientation depending on the antisolvent properties. Finally, this work demonstrates that photovoltaic devices fabricated from the highly oriented films, are superior to those with a random polycrystalline structure in terms of both performance and stability.
  • Item
    Intermixing-Driven Surface and Bulk Ferromagnetism in the Quantum Anomalous Hall Candidate MnBi6Te10
    (Weinheim : Wiley-VCH, 2023) Tcakaev, Abdul‐Vakhab; Rubrecht, Bastian; Facio, Jorge I.; Zabolotnyy, Volodymyr B.; Corredor, Laura T.; Folkers, Laura C.; Kochetkova, Ekaterina; Peixoto, Thiago R. F.; Kagerer, Philipp; Heinze, Simon; Bentmann, Hendrik; Green, Robert J.; Gargiani, Pierluigi; Valvidares, Manuel; Weschke, Eugen; Haverkort, Maurits W.; Reinert, Friedrich; van den Brink, Jeroen; Büchner, Bernd; Wolter, Anja U. B.; Isaeva, Anna; Hinkov, Vladimir
    The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi2Te4 and MnBi4Te7 benchmark the (MnBi2Te4)(Bi2Te3)n family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi2Te4 septuple layers (SLs). However, the QAHE realization is complicated in MnBi2Te4 and MnBi4Te7 due to the substantial antiferromagnetic (AFM) coupling between the SLs. An FM state, advantageous for the QAHE, can be stabilized by interlacing the SLs with an increasing number n of Bi2Te3 quintuple layers (QLs). However, the mechanisms driving the FM state and the number of necessary QLs are not understood, and the surface magnetism remains obscure. Here, robust FM properties in MnBi6Te10 (n = 2) with Tc ≈ 12 K are demonstrated and their origin is established in the Mn/Bi intermixing phenomenon by a combined experimental and theoretical study. The measurements reveal a magnetically intact surface with a large magnetic moment, and with FM properties similar to the bulk. This investigation thus consolidates the MnBi6Te10 system as perspective for the QAHE at elevated temperatures.
  • Item
    Photoluminescence Mapping over Laser Pulse Fluence and Repetition Rate as a Fingerprint of Charge and Defect Dynamics in Perovskites
    (Weinheim : Wiley-VCH, 2023) Rao, Shraddha M.; Kiligaridis, Alexander; Yangui, Aymen; An, Qingzhi; Vaynzof, Yana; Scheblykin, Ivan G.
    Defects in metal halide perovskites (MHP) are photosensitive, making the observer effect unavoidable when laser spectroscopy methods are applied. Photoluminescence (PL) bleaching and enhancement under light soaking and recovery in dark are examples of the transient phenomena that are consequent to the creation and healing of defects. Depending on the initial sample composition, environment, and other factors, the defect nature and evolution can strongly vary, making spectroscopic data analysis prone to misinterpretations. Herein, the use of an automatically acquired dependence of PL quantum yield (PLQY) on the laser pulse repetition rate and pulse fluence as a unique fingerprint of both charge carrier dynamics and defect evolution is demonstrated. A simple visual comparison of such fingerprints allows for assessment of similarities and differences between MHP samples. The study illustrates this by examining methylammonium lead triiodide (MAPbI3) films with altered stoichiometry that just after preparation showed very pronounced defect dynamics at time scale from milliseconds to seconds, clearly distorting the PLQY fingerprint. Upon weeks of storage, the sample fingerprints evolve toward the standard stoichiometric MAPbI3 in terms of both charge carrier dynamics and defect stability. Automatic PLQY mapping can be used as a universal method for assessment of perovskite sample quality.
  • Item
    Metasurface design for determination of protein concentration in enzymatic reaction mixture
    (2023) Kuznetsova, Kateryna; Eremenko, Zoya; Pashynska, Vlada; Martynov, Artur; Kulish , Serhii; Voloshyn , Yuliia
    In the paper a standard multiwell plate structure was utilized to determine the concentration of human serum albumin in water solutions and enzymatic reaction mixtures. This study marks the first application of the multiwell plate structure as a resonant metasurface unit cell through numerical simulation using the COMSOL Multiphysics software. By adjusting the operating parameters of the proposed multiwell plate (MWP) metasurface, resonance phenomena within the microwave range could be observed. The complex permittivity (CP) values of the tested solutions, obtained experimentally using the microwave dielectrometry method, were employed for the MWP metasurface modelling. The correspondence between the resonance frequency shifts of the MWP metasurface and the changes in CP values of the tested solutions was demonstrated. For the convenience of the protein concentration determination, the concentration calibration graph was proposed. Our approach enables the detection of protein concentration in the reaction mixture after 60 minutes duration of the enzymatic reaction course. The study demonstrated the customization of metasurface dimensions to enable interaction with electromagnetic waves at specific frequencies. The availability of standard multiwell plates in different sizes allows for testing solutions across various frequency ranges.
  • Item
    Semitransparent Perovskite Solar Cells with an Evaporated Ultra-Thin Perovskite Absorber
    (Weinheim : Wiley-VCH, 2023) Zhang, Zongbao; Ji, Ran; Jia, Xiangkun; Wang, Shu‐Jen; Deconinck, Marielle; Siliavka, Elena; Vaynzof, Yana
    Metal halide perovskites are of great interest for application in semitransparent solar cells due to their tunable bandgap and high performance. However, fabricating high-efficiency perovskite semitransparent devices with high average visible transmittance (AVT) is challenging because of their high absorption coefficient. Here, a co-evaporation process is adopted to fabricate ultra-thin CsPbI3 perovskite films. The smooth surface and orientated crystal growth of the evaporated perovskite films make it possible to achieve 10 nm thin films with compact and continuous morphology without pinholes. When integrated into a p-i-n device structure of glass/ITO/PTAA/perovskite/PCBM/BCP/Al/Ag with an optimized transparent electrode, these ultra-thin layers result in an impressive open-circuit voltage (VOC) of 1.08 V and a fill factor (FF) of 80%. Consequently, a power conversion efficiency (PCE) of 3.6% with an AVT above 50% is demonstrated, which is the first report for a perovskite device of a 10 nm active layer thickness with high VOC, FF and AVT. These findings demonstrate that deposition by thermal evaporation makes it possible to form compact ultra-thin perovskite films, which are of great interest for future smart windows, light-emitting diodes, and tandem device applications.