Search Results

Now showing 1 - 6 of 6
  • Item
    Floating Zone Growth of Pure and Pb-Doped Bi-2201 Crystals
    (Basel : MDPI, 2024) Roslova, Maria; Büchner, Bernd; Maljuk, Andrey
    In this review, we summarize recent progress in crystal growth and understanding of the influence of crystal structure on superconductivity in pure and Pb-doped Bi2Sr2CuOy (Bi-2201) materials belonging to the overdoped region of high-temperature cuprate superconductors. The crystal growth of Bi-2201 superconductors faces challenges due to intricate materials chemistry and the lack of knowledge of corresponding phase diagrams. Historically, a crucible-free floating zone method emerged as the most promising growth approach for these materials, resulting in high-quality single crystals. This review outlines the described methods in the literature and the authors’ synthesis endeavors encompassing Pb-doped Bi-2201 crystals, provides a detailed structural characterization of as-grown and post-growth annealed samples, and highlights optimal growth conditions that yield large-size, single-phase, and compositionally homogeneous Bi-2201 single crystals.
  • Item
    On the Preparation and Spectroelectrochemical Characterization of Certain 2,5-Bis(het)aryl Substituted Thiophenes
    (Weinheim : Wiley-VCH, 2024) Dmitrieva, Evgenia; Barche, Jens; Popov, Alexey A.; Hartmann, Horst
    In this work, a series of novel 2,5-bis(het)aryl and 2,5-bis-thienyl substituted thiophenes have been synthesized and characterized by ultraviolet-visible-near infrared (UV-Vis-NIR) absorption and fluorescence spectroscopy as well as cyclic voltammetry. From the electron paramagnetic resonance (EPR)/UV-Vis-NIR spectroelectrochemical data, information about the optical and magnetic properties of the charged species of these compounds have been provided. The spin distributions in the electrochemically generated radical ions were estimated experimentally and compared with theoretical data.
  • Item
    Steering of Vortices by Magnetic Field Tilting in Open Superconductor Nanotubes
    (Basel : MDPI, 2024) Bogush, Igor; Fomin, Vladimir M.; Dobrovolskiy, Oleksandr V.
    In planar superconductor thin films, the places of nucleation and arrangements of moving vortices are determined by structural defects. However, various applications of superconductors require reconfigurable steering of fluxons, which is hard to realize with geometrically predefined vortex pinning landscapes. Here, on the basis of the time-dependent Ginzburg–Landau equation, we present an approach for the steering of vortex chains and vortex jets in superconductor nanotubes containing a slit. The idea is based on the tilting of the magnetic field (Formula presented.) at an angle (Formula presented.) in the plane perpendicular to the axis of a nanotube carrying an azimuthal transport current. Namely, while at (Formula presented.), vortices move paraxially in opposite directions within each half-tube; an increase in (Formula presented.) displaces the areas with the close-to-maximum normal component (Formula presented.) to the close(opposite)-to-slit regions, giving rise to descending (ascending) branches in the induced-voltage frequency spectrum (Formula presented.). At lower B values, upon reaching the critical angle (Formula presented.), the close-to-slit vortex chains disappear, yielding (Formula presented.) of the (Formula presented.) type ((Formula presented.) : an integer; (Formula presented.) : the vortex nucleation frequency). At higher B values, (Formula presented.) is largely blurry because of multifurcations of vortex trajectories, leading to the coexistence of a vortex jet with two vortex chains at (Formula presented.). In addition to prospects for the tuning of GHz-frequency spectra and the steering of vortices as information bits, our findings lay the foundation for on-demand tuning of vortex arrangements in 3D superconductor membranes in tilted magnetic fields.
  • Item
    Cobalt-based Co3Mo3N/Co4N/Co Metallic Heterostructure as a Highly Active Electrocatalyst for Alkaline Overall Water Splitting
    (Weinheim : Wiley-VCH, 2024) Liu, Yuanwu; Wang, Lirong; Hübner, René; Kresse, Johannes; Zhang, Xiaoming; Deconinick, Marielle; Vaynzof, Yana; Weidinger, Inez M.; Eychmüller, Alexander
    Alkaline water electrolysis holds promise for large-scale hydrogen production, yet it encounters challenges like high voltage and limited stability at higher current densities, primarily due to inefficient electron transport kinetics. Herein, a novel cobalt-based metallic heterostructure (Co3Mo3N/Co4N/Co) is designed for excellent water electrolysis. In operando Raman experiments reveal that the formation of the Co3Mo3N/Co4N heterointerface boosts the free water adsorption and dissociation, increasing the available protons for subsequent hydrogen production. Furthermore, the altered electronic structure of the Co3Mo3N/Co4N heterointerface optimizes ΔGH of the nitrogen atoms at the interface. This synergistic effect between interfacial nitrogen atoms and metal phase cobalt creates highly efficient active sites for the hydrogen evolution reaction (HER), thereby enhancing the overall HER performance. Additionally, the heterostructure exhibits a rapid OH− adsorption rate, coupled with great adsorption strength, leading to improved oxygen evolution reaction (OER) performance. Crucially, the metallic heterojunction accelerates electron transport, expediting the afore-mentioned reaction steps and enhancing water splitting efficiency. The Co3Mo3N/Co4N/Co electrocatalyst in the water electrolyzer delivers excellent performance, with a low 1.58 V cell voltage at 10 mA cm−2, and maintains 100 % retention over 100 hours at 200 mA cm−2, surpassing the Pt/C RuO2 electrolyzer
  • Item
    Capturing Unstable Metallofullerenes
    (Basel : MDPI, 2024) Liu, Fupin; Popov, Alexey A.
    Metallofullerenes are interesting molecules with unique structures and physicochemical properties. After they are formed in the arc-discharge process, they are first buried in the carbon soot, which requires solvent extraction to fish them out, normally followed by HPLC separation. In this minireview, we summarize the main procedures developed to obtain pure metallofullerenes, including well-established extraction with conventional fullerene solvents followed by HPLC (procedure (I) as well as several methods developed for isolation and purification of unstable fullerenes insoluble in conventional fullerene solvents, including chemical modification followed by dissolution (II.1), chemical functionalization during extraction followed by HPLC (II.2), and chemical functionalization of ionic EMFs after redox-extraction followed by HPLC (procedure II.3). The main focus here is on procedure II.3, for which the current status and future perspective are discussed.
  • Item
    Correlation of Work Function and Conformation of C80 Endofullerenes on h-BN/Ni(111)
    (Weinheim : Wiley-VCH, 2024) Stania, Roland; Seitsonen, Ari Paavo; Jung, Hyunjin; Kunhardt, David; Popov, Alexey A.; Muntwiler, Matthias; Greber, Thomas
    Change of conformation or polarization of molecules is an expression of their functionality. If the two correlate, electric fields can change the conformation. In the case of endofullerene single-molecule magnets the conformation is linked to an electric and a magnetic dipole moment, and therefore magnetoelectric effects are envisoned. The interface system of one monolayer Sc2TbN@C80 on hexagonal boron nitride (h-BN) on Ni(111) has been studied. The molecular layer is hexagonally close packedbut incommensurate. With photoemission the polarization and the conformation of the molecules are addressed by the work function and angular intensity distributions. Valence band photoemission (ARPES) shows a temperature-induced energy shift of the C80 molecular orbitals that is parallel to a change in work function of 0.25 eV without charging the molecules. ARPES indicates a modification in molecular conformations between 30 and 300 K. This order–disorder transition involves a polarization change in the interface and is centered at 125 K as observed with high-resolution X-ray photoelectron spectroscopy (XPS). The temperature dependence is described with a thermodynamic model that accounts for disordering with an excitation energy of 74 meV into a high entropy ensemble. All experimental results are supported by density functional theory (DFT).