Search Results

Now showing 1 - 9 of 9
  • Item
    Amorphous-Like Ultralow Thermal Transport in Crystalline Argyrodite Cu7PS6
    (Weinheim : Wiley-VCH, 2024) Shen, Xingchen; Ouyang, Niuchang; Huang, Yuling; Tung, Yung‐Hsiang; Yang, Chun‐Chuen; Faizan, Muhammad; Perez, Nicolas; He, Ran; Sotnikov, Andrei; Willa, Kristin; Wang, Chen; Chen, Yue; Guilmeau, Emmanuel
    Due to their amorphous-like ultralow lattice thermal conductivity both below and above the superionic phase transition, crystalline Cu- and Ag-based superionic argyrodites have garnered widespread attention as promising thermoelectric materials. However, despite their intriguing properties, quantifying their lattice thermal conductivities and a comprehensive understanding of the microscopic dynamics that drive these extraordinary properties are still lacking. Here, an integrated experimental and theoretical approach is adopted to reveal the presence of Cu-dominated low-energy optical phonons in the Cu-based argyrodite Cu7PS6. These phonons yield strong acoustic-optical phonon scattering through avoided crossing, enabling ultralow lattice thermal conductivity. The Unified Theory of thermal transport is employed to analyze heat conduction and successfully reproduce the experimental amorphous-like ultralow lattice thermal conductivities, ranging from 0.43 to 0.58 W m−1 K−1, in the temperature range of 100–400 K. The study reveals that the amorphous-like ultralow thermal conductivity of Cu7PS6 stems from a significantly dominant wave-like conduction mechanism. Moreover, the simulations elucidate the wave-like thermal transport mainly results from the contribution of Cu-associated low-energy overlapping optical phonons. This study highlights the crucial role of low-energy and overlapping optical modes in facilitating amorphous-like ultralow thermal transport, providing a thorough understanding of the underlying complex dynamics of argyrodites.
  • Item
    The impact of chemical short-range order on the thermophysical properties of medium- and high-entropy alloys
    (Amsterdam [u.a.] : Elsevier Science, 2024) Andreoli, Angelo F.; Fantin, Andrea; Kasatikov, Sergey; Bacurau, Vinícius P.; Widom, Michael; Gargarella, Piter; Mazzer, Eric M.; Woodcock, Thomas G.; Nielsch, Kornelius; Coury, Francisco G.
    The unusual behavior observed in the coefficient of thermal expansion and specific heat capacity of CrFeNi, CoCrNi, and CoCrFeNi medium/high-entropy alloys is commonly referred to as the K-state effect. It is shown to be independent of the Curie temperature, as demonstrated by temperature-dependent magnetic moment measurements. CoCrFeNi alloy is chosen for detailed characterization; potential reasons for the K-state effect such as texture, recrystallization, and second-phase precipitation are ruled out. An examination of the electronic structure indicates the formation of a pseudo-gap in the Density of States, which suggests a specific chemical interaction between Ni and Cr atoms upon alloying. Hybrid Monte Carlo/Molecular Dynamic (MC/MD) simulations indicate the presence of non-negligible chemical short-range order (CSRO). Local lattice distortions are shown to be negligible, although deviations around Cr and Ni elements from those expected in a fully disordered structure are experimentally observed by X-ray absorption spectroscopy. The determined bonding distances are in good agreement with MC/MD calculations. A mechanism is proposed to explain the anomalies and calorimetric experiments and their results are used to validate the mechanism.
  • Item
    Laser powder bed fusion of Fe60(CoCrNiMn)40 medium-entropy alloy with excellent strength-ductility balance
    (Amsterdam [u.a.] : Elsevier Science, 2024) Yang, Shengze; Liu, Yang; Chen, Hongyu; Wang, Yonggang; Kosiba, Konrad
    In this study, Fe60(CoCrNiMn)40 medium-entropy alloy (MEA) was fabricated by laser powder bed fusion (LPBF) via mixing of pure Fe and FeCoCrNiMn powders, the processability, microstructure and mechanical properties were systematically investigated, and the mechanism of strengthening and toughening were revealed through combination of experiments and molecular dynamics (MD) simulations. Results show that fraction of BCC phase decreased gradually with increasing volume energy density (VED), and thus heterostructue with varying FCC and BCC phases were produced through regulating the VED. The Fe60(CoCrNiMn)40 MEA (with scanning speeds of 700 and 800 mm/s) showed excellent strength-plasticity balance (e.g. 476 MPa, 612 MPa and 63 %) compared to the equiatomic FeCoCrNiMn HEA, which is ascribed to the synergistic strengthening and toughening effects involving the twinning induced plasticity (TWIP) and the reinforcement caused by the BCC phase (act as reinforced particle) embedded in the FCC matrix.
  • Item
    Role of topology in compensated magnetic systems
    (Melville, NY : AIP Publ., 2024) Reichlova, Helena; Kriegner, Dominik; Mook, Alexander; Althammer, Matthias; Thomas, Andy
    Topology plays a crucial and multifaceted role in solid state physics, leading to a remarkable array of newly investigated materials and phenomena. In this Perspective, we provide a brief summary of well-established model materials with a particular focus on compensated magnets and highlight key phenomena that emerge due to the influence of topology in these systems. The overview covers various magneto-transport phenomena, with a particular focus on the extensively investigated anomalous magneto-transport effects. Furthermore, we look into the significance of topology in understanding elementary magnetic excitations, namely magnons, where the role of topology gained considerable attention from both theoretical and experimental perspectives. Since electrons and magnons carry energy, we explore the implications of topology in combined heat and spin transport experiments in compensated magnetic systems. At the end of each section, we highlight intriguing unanswered questions in this research direction. To finally conclude, we offer our perspective on what could be the next advancements regarding the interaction between compensated magnetism and topology.
  • Item
    Special Issue on Computational Ultrasound Imaging and Applications
    (Basel : MDPI, 2024) Nauber, Richard; Büttner, Lars; Czarske, Jürgen
    [No abstract available]
  • Item
    Correlation of Work Function and Conformation of C80 Endofullerenes on h-BN/Ni(111)
    (Weinheim : Wiley-VCH, 2024) Stania, Roland; Seitsonen, Ari Paavo; Jung, Hyunjin; Kunhardt, David; Popov, Alexey A.; Muntwiler, Matthias; Greber, Thomas
    Change of conformation or polarization of molecules is an expression of their functionality. If the two correlate, electric fields can change the conformation. In the case of endofullerene single-molecule magnets the conformation is linked to an electric and a magnetic dipole moment, and therefore magnetoelectric effects are envisoned. The interface system of one monolayer Sc2TbN@C80 on hexagonal boron nitride (h-BN) on Ni(111) has been studied. The molecular layer is hexagonally close packedbut incommensurate. With photoemission the polarization and the conformation of the molecules are addressed by the work function and angular intensity distributions. Valence band photoemission (ARPES) shows a temperature-induced energy shift of the C80 molecular orbitals that is parallel to a change in work function of 0.25 eV without charging the molecules. ARPES indicates a modification in molecular conformations between 30 and 300 K. This order–disorder transition involves a polarization change in the interface and is centered at 125 K as observed with high-resolution X-ray photoelectron spectroscopy (XPS). The temperature dependence is described with a thermodynamic model that accounts for disordering with an excitation energy of 74 meV into a high entropy ensemble. All experimental results are supported by density functional theory (DFT).
  • Item
    Cation exchange synthesis of AgBiS2 quantum dots for highly efficient solar cells
    (Cambridge : RSC Publ., 2024) Senina, Alina; Prudnikau, Anatol; Wrzesińska-Lashkova, Angelika; Vaynzof, Yana; Paulus, Fabian
    Silver bismuth sulfide (AgBiS2) nanocrystals have emerged as a promising eco-friendly, low-cost solar cell absorber material. Their direct synthesis often relies on the hot-injection method, requiring the application of high temperatures and vacuum for prolonged times. Here, we demonstrate an alternative synthetic approach via a cation exchange reaction. In the first-step, bis(stearoyl)sulfide is used as an air-stable sulfur precursor for the synthesis of small, monodisperse Ag2S nanocrystals at room-temperature. In a second step, bismuth cations are incorporated into the nanocrystal lattice to form ternary AgBiS2 nanocrystals, without altering their size and shape. When implemented into photovoltaic devices, AgBiS2 nanocrystals obtained by cation exchange reach power conversion efficiencies of up to 7.35%, demonstrating the efficacy of the new synthetic approach for the formation of high-quality, ternary semiconducting nanocrystals.
  • Item
    Bioactive glass–ceramics containing fluorapatite, xonotlite, cuspidine and wollastonite form apatite faster than their corresponding glasses
    ([London] : Macmillan Publishers Limited, 2024) Kirste, Gloria; Contreras Jaimes, Altair; de Pablos-Martín, Araceli; de Souza e Silva, Juliana Martins; Massera, Jonathan; Hill, Robert G.; Brauer, Delia S.
    Crystallisation of bioactive glasses has been claimed to negatively affect the ion release from bioactive glasses. Here, we compare ion release and mineralisation in Tris–HCl buffer solution for a series of glass–ceramics and their parent glasses in the system SiO2–CaO–P2O5–CaF2. Time-resolved X-ray diffraction analysis of glass–ceramic degradation, including quantification of crystal fractions by full pattern refinement, show that the glass–ceramics precipitated apatite faster than the corresponding glasses, in agreement with faster ion release from the glass–ceramics. Imaging by transmission electron microscopy and X-ray nano-computed tomography suggest that this accelerated degradation may be caused by the presence of nano-sized channels along the internal crystal/glassy matrix interfaces. In addition, the presence of crystalline fluorapatite in the glass–ceramics facilitated apatite nucleation and crystallisation during immersion. These results suggest that the popular view of bioactive glass crystallisation being a disadvantage for degradation, apatite formation and, subsequently, bioactivity may depend on the actual system study and, thus, has to be reconsidered.
  • Item
    Potenziale und Herausforderungen von Building Information Modeling im Facility Management : Eine Fallstudie zur Untersuchung ausgewählter BIM-Anwendungsfälle mit Power BI
    (Hannover : Technische Informationsbibliothek, 2024) Ernstorfer, Elena
    Despite the potential benefits that Building Information Modelling (BIM) can offer in the operation and maintenance phase of buildings, BIM has so far mainly been used in the design and construction phase in the construction industry. Until now the use of BIM methods in FM inhibited by a lack of standards and uniform processes, among other things. Many companies are deterred by the high upfront costs for software, hardware and staff training. In order to promote the acceptance of BIM-based FM, low-threshold solutions are necessary. This thesis investigates the approach of using Power BI to facilitate targeted access to FM-relevant data of a BIM model and to link these with further data sources. With the help of a plug-in called Tracer, any data up to floor plan and 3D views can be extracted from a BIM model and integrated into Power BI dashboards. The case study conducted as part of this work shows that Power BI offers a solution approach to BIM integration that addresses some of the identified challenges. An expert survey confirms the user-friendliness, functionality and optimisation potential of the Power BI Dashboard solution for the processes considered.