Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Electron beam induced dehydrogenation of MgH2 studied by VEELS

2016, Surrey, Alexander, Schultz, Ludwig, Rellinghaus, Bernd

Nanosized or nanoconfined hydrides are promising materials for solid-state hydrogen storage. Most of these hydrides, however, degrade fast during the structural characterization utilizing transmission electron microscopy (TEM) upon the irradiation with the imaging electron beam due to radiolysis. We use ball-milled MgH2 as a reference material for in-situ TEM experiments under low-dose conditions to study and quantitatively understand the electron beam-induced dehydrogenation. For this, valence electron energy loss spectroscopy (VEELS) measurements are conducted in a monochromated FEI Titan3 80–300 microscope. From observing the plasmonic absorptions it is found that MgH2 successively converts into Mg upon electron irradiation. The temporal evolution of the spectra is analyzed quantitatively to determine the thickness-dependent, characteristic electron doses for electron energies of both 80 and 300 keV. The measured electron doses can be quantitatively explained by the inelastic scattering of the incident high-energy electrons by the MgH2 plasmon. The obtained insights are also relevant for the TEM characterization of other hydrides.

Loading...
Thumbnail Image
Item

Redox Memristors with Volatile Threshold Switching Behavior for Neuromorphic Computing

2022, Wang, Yu-Hao, Gong, Tian-Cheng, Ding, Ya-Xin, Li, Yang, Wang, Wei, Chen, Zi-Ang, Du, Nan, Covi, Erika, Farronato, Matteo, Ielmini, Daniele, Zhang, Xu-Meng, Luo, Qing

The spiking neural network (SNN), closely inspired by the human brain, is one of the most powerful platforms to enable highly efficient, low cost, and robust neuromorphic computations in hardware using traditional or emerging electron devices within an integrated system. In the hardware implementation, the building of artificial spiking neurons is fundamental for constructing the whole system. However, with the slowing down of Moore’s Law, the traditional complementary metal-oxide-semiconductor (CMOS) technology is gradually fading and is unable to meet the growing needs of neuromorphic computing. Besides, the existing artificial neuron circuits are complex owing to the limited bio-plausibility of CMOS devices. Memristors with volatile threshold switching (TS) behaviors and rich dynamics are promising candidates to emulate the biological spiking neurons beyond the CMOS technology and build high-efficient neuromorphic systems. Herein, the state-of-the-art about the fundamental knowledge of SNNs is reviewed. Moreover, we review the implementation of TS memristor-based neurons and their systems, and point out the challenges that should be further considered from devices to circuits in the system demonstrations. We hope that this review could provide clues and be helpful for the future development of neuromorphic computing with memristors.