Search Results

Now showing 1 - 2 of 2
  • Item
    EVENTSKG: A 5-Star Dataset of Top-Ranked Events in Eight Computer Science Communities
    (Berlin ; Heidelberg : Springer, 2019) Fathalla, Said; Lange, Christoph; Auer, Sören; Hitzler, Pascal; Fernández, Miriam; Janowicz, Krzysztof; Zaveri, Amrapali; Gray, Alasdair J.G.; Lopez, Vanessa; Haller, Armin; Hammar, Karl
    Metadata of scientific events has become increasingly available on the Web, albeit often as raw data in various formats, disregarding its semantics and interlinking relations. This leads to restricting the usability of this data for, e.g., subsequent analyses and reasoning. Therefore, there is a pressing need to represent this data in a semantic representation, i.e., Linked Data. We present the new release of the EVENTSKG dataset, comprising comprehensive semantic descriptions of scientific events of eight computer science communities. Currently, EVENTSKG is a 5-star dataset containing metadata of 73 top-ranked event series (almost 2,000 events) established over the last five decades. The new release is a Linked Open Dataset adhering to an updated version of the Scientific Events Ontology, a reference ontology for event metadata representation, leading to richer and cleaner data. To facilitate the maintenance of EVENTSKG and to ensure its sustainability, EVENTSKG is coupled with a Java API that enables users to add/update events metadata without going into the details of the representation of the dataset. We shed light on events characteristics by analyzing EVENTSKG data, which provides a flexible means for customization in order to better understand the characteristics of renowned CS events.
  • Item
    Introducing the Open Energy Ontology: Enhancing data interpretation and interfacing in energy systems analysis
    (Amsterdam : Elsevier ScienceDirect, 2021) Booshehri, Meisam; Emele, Lukas; Flügel, Simon; Förster, Hannah; Frey, Johannes; Frey, Ulrich; Glauer, Martin; Hastings, Janna; Hofmann, Christian; Hoyer-Klick, Carsten; Hülk, Ludwig; Kleinau, Anna; Knosala, Kevin; Kotzur, Leander; Kuckertz, Patrick; Mossakowski, Till; Muschner, Christoph; Neuhaus, Fabian; Pehl, Michaja; Robinius, Martin; Sehn, Vera; Stappel, Mirjam
    Heterogeneous data, different definitions and incompatible models are a huge problem in many domains, with no exception for the field of energy systems analysis. Hence, it is hard to re-use results, compare model results or couple models at all. Ontologies provide a precisely defined vocabulary to build a common and shared conceptualisation of the energy domain. Here, we present the Open Energy Ontology (OEO) developed for the domain of energy systems analysis. Using the OEO provides several benefits for the community. First, it enables consistent annotation of large amounts of data from various research projects. One example is the Open Energy Platform (OEP). Adding such annotations makes data semantically searchable, exchangeable, re-usable and interoperable. Second, computational model coupling becomes much easier. The advantages of using an ontology such as the OEO are demonstrated with three use cases: data representation, data annotation and interface homogenisation. We also describe how the ontology can be used for linked open data (LOD).