Search Results

Now showing 1 - 10 of 25
  • Item
    Master Memory Function for Delay-Based Reservoir Computers With Single-Variable Dynamics
    ([New York, NY] : IEEE, 2022) Köster, Felix; Yanchuk, Serhiy; Lüdge, Kathy
    We show that many delay-based reservoir computers considered in the literature can be characterized by a universal master memory function (MMF). Once computed for two independent parameters, this function provides linear memory capacity for any delay-based single-variable reservoir with small inputs. Moreover, we propose an analytical description of the MMF that enables its efficient and fast computation. Our approach can be applied not only to single-variable delay-based reservoirs governed by known dynamical rules, such as the Mackey–Glass or Stuart–Landau-like systems, but also to reservoirs whose dynamical model is not available.
  • Item
    Supermodeling by combining imperfect models
    (Amsterdam : Elsevier B.V., 2011) Selten, F.M.; Duane, G.S.; Wiegerinck, W.; Keenlyside, N.; Kurths, J.; Kocarev, L.
    SUMO (Supermodeling by combining imperfect models) is a three-year project funded under FET Open program with a starting date October, 1, 2010. We review some basic facts and findings of the SUMO project.
  • Item
    Synchronization of Time-Delay Chaotic System in Presence of Noise
    (Milton Park : Taylor and Francis Ltd., 2012) Lei, M.; Peng, H.-P.; Yang, C.-Y.; Li, L.-X.
    Chaotic synchronization, as a key technique of chaotic secure communication, has received much attention in recent years. This paper proposes a nonlinear synchronization scheme for the time-delay chaotic system in the presence of noise. In this scheme, an integrator is introduced to suppress the influence of channel noise in the synchronization process. The experimental results demonstrate the effectiveness and feasibility of the proposed scheme which is strongly robust against noises, especially the high-frequency noises.
  • Item
    Digital IIR filters design using differential evolution algorithm with a controllable probabilistic population size
    (San Francisco, CA : Public Library of Science (PLoS), 2012) Zhu, W.; Fang, J.-A.; Tang, Y.; Zhang, W.; Du, W.
    Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive.
  • Item
    Order patterns networks (orpan) - A method to estimate time-evolving functional connectivity from multivariate time series
    (Lausanne : Frontiers Research Foundation, 2012) Schinkel, S.; Zamora-López, G.; Dimigen, O.; Sommer, W.; Kurths, J.
    Complex networks provide an excellent framework for studying the function of the human brain activity. Yet estimating functional networks from measured signals is not trivial, especially if the data is non-stationary and noisy as it is often the case with physiological recordings. In this article we propose a method that uses the local rank structure of the data to define functional links in terms of identical rank structures. The method yields temporal sequences of networks which permits to trace the evolution of the functional connectivity during the time course of the observation. We demonstrate the potentials of this approach with model data as well as with experimental data from an electrophysiological study on language processing.
  • Item
    IEEE Access Special Section Editorial: Recent Advances on Hybrid Complex Networks: Analysis and Control
    (New York, NY : IEEE, 2021) Lu, Jianquan; Ho, Daniel W. C.; Huang, Tingwen; Kurths, Jurgen; Trajkovic, Ljiljana
    Complex networks typically involve multiple disciplines due to network dynamics and their statistical nature. When modeling practical networks, both impulsive effects and logical dynamics have recently attracted increasing attention. Hence, it is of interest and importance to consider hybrid complex networks with impulsive effects and logical dynamics. Relevant research is prevalent in cells, ecology, social systems, and communication engineering. In hybrid complex networks, numerous nodes are coupled through networks and their properties usually lead to complex dynamic behaviors, including discrete and continuous dynamics with finite values of time and state space. Generally, continuous and discrete sections of the systems are described by differential and difference equations, respectively. Logical networks are used to model the systems where time and state space take finite values. Although interesting results have been reported regarding hybrid complex networks, the analysis methods and relevant results could be further improved with respect to conservative impulsive delay inequalities and reproducibility of corresponding stability or synchronization criteria. Therefore, it is necessary to devise effective approaches to improve the analysis method and results dealing with hybrid complex networks.
  • Item
    Fast-Slow-Scale Interaction Induced Parallel Resonance and its Suppression in Voltage Source Converters
    (New York, NY : IEEE, 2021) Ma, Rui; Qiu, Qi; Kurths, Jürgen; Zhan, Meng
    Multi-timescale interaction of power electronics devices, including voltage source converter (VSC), has made the stability and analysis of high penetrating renewable power systems very complicated. In this paper, the impedance model is used to analyze the multi-timescale characteristics and interaction of the VSC. Firstly, the multi-timescale impedance characteristics of VSC are investigated based on the Bode plots. It is found that the slow-timescale (within the DC-link voltage control scale) and fast-timescale (within the AC current control scale) models are separately consistent with the full-order model perfectly within their low- and high-frequency ranges. In addition, there exists a high impedance peak within the intermediate frequency range (roughly from 10 Hz to 100 Hz). Then, the impedance peak is theoretically estimated and explained by the slow-fast-scale impedance parallel resonance through transfer-function diagram analysis. Moreover, it is found that the impedance peak is more related to some outer controllers, such as the alternative voltage control and active power control. Specifically, larger proportional coefficients can greatly suppress the resonance peak. Finally, simulations and experiments are conducted to verify the generality of the multi-timescale characteristics and interaction of the VSC. Hence these findings are not only significant to provide a physical insight into the inner key structure of the impedance of VSC, but also expected to be helpful for controller and parameter design of the VSC.
  • Item
    Identifying controlling nodes in neuronal networks in different scales
    (San Francisco, CA : Public Library of Science (PLoS), 2012) Tang, Y.; Gao, H.; Zou, W.; Kurths, J.
    Recent studies have detected hubs in neuronal networks using degree, betweenness centrality, motif and synchronization and revealed the importance of hubs in their structural and functional roles. In addition, the analysis of complex networks in different scales are widely used in physics community. This can provide detailed insights into the intrinsic properties of networks. In this study, we focus on the identification of controlling regions in cortical networks of cats' brain in microscopic, mesoscopic and macroscopic scales, based on single-objective evolutionary computation methods. The problem is investigated by considering two measures of controllability separately. The impact of the number of driver nodes on controllability is revealed and the properties of controlling nodes are shown in a statistical way. Our results show that the statistical properties of the controlling nodes display a concave or convex shape with an increase of the allowed number of controlling nodes, revealing a transition in choosing driver nodes from the areas with a large degree to the areas with a low degree. Interestingly, the community Auditory in cats' brain, which has sparse connections with other communities, plays an important role in controlling the neuronal networks.
  • Item
    Emotional tendencies in online social networking: a statistical analysis
    (London : Taylor & Francis Open, 2016) Zhang, Xianhan; Zhang, Nan; Zhao, Letong; Zhang, Ruihan; Cao, Jinde; Lu, Jianquan; Kurths, Jürgen; Qian, Cheng
    Numerous previous studies suggested that people's emotional tendency (ET) towards an issue can often be affected by others. But in some cases, people are unwilling to believe opposite points. This paper aims to study whether people's emotional tendencies (ET) are susceptible with exposures to others' ET concerning a special topic. ET contained in 798,057 pieces of private-information-deleted Chinese Weibo posts are carefully investigated via a revised genetic algorithm, a nonlinear method. Note that nearly all of the posts are closely related to a special topic, the terrible earthquake happen in Japan, 11 March 2011. By conducting statistical analysis including coefficient calculations and hypothesis testing, this study shows that concerning this particular topic, Chinese citizens' first impressions about Japan are solid enough to form their ET and would not be easily altered. Moreover, according to analysis and discussion, we discover that node-to-node impact is exaggerated in some theoretical information diffusion models. Instead it is actually the interaction between nodes' properties and the spread information that matters in the process of information diffusions.
  • Item
    Identifying Multiple Influential Users Based on the Overlapping Influence in Multiplex Networks
    (New York, NY : IEEE, 2019) Chen, Jianjun; Denk, Yue; Su, Zhen; Wang, Songxin; Gao, Chao; Li, Xianghua
    Online social networks (OSNs) are interaction platforms that can promote knowledge spreading, rumor propagation, and virus diffusion. Identifying influential users in OSNs is of great significance for accelerating the information propagation especially when information is able to travel across multiple channels. However, most previous studies are limited to a single network or select multiple influential users based on the centrality ranking result of each user, not addressing the overlapping influence (OI) among users. In practice, the collective influence of multiple users is not equal to the total sum of these users' influences. In this paper, we propose a novel OI-based method for identifying multiple influential users in multiplex social networks. We first define the effective spreading shortest path (ESSP) by utilizing the concept of spreading rate in order to denote the relative location of users. Then, the collective influence is quantified by taking the topological factor and the location distribution of users into account. The identified users based on our proposed method are central and relatively scattered with a low overlapping influence. With the Susceptible-Infected-Recovered (SIR) model, we estimate our proposed method with other benchmark algorithms. Experimental results in both synthetic and real-world networks verify that our proposed method has a better performance in terms of the spreading efficiency. © 2013 IEEE.