Search Results

Now showing 1 - 10 of 45
  • Item
    DDB-KG: The German Bibliographic Heritage in a Knowledge Graph
    (Aachen, Germany : RWTH Aachen, 2021) Tan, Mary Ann; Tietz, Tabea; Bruns, Oleksandra; Oppenlaender, Jonas; Dessì, Danilo; Harald, Sack; Sumikawa, Yasunobu; Ikejiri, Ryohei; Doucet, Antoine; Pfanzelter, Eva; Hasanuzzaman, Mohammed; Dias, Gaël; Milligan, Ian; Jatowt, Adam
    Under the German government’s initiative “NEUSTART Kultur”, the German Digital Library or Deutsche Digitale Bibliothek (DDB) is undergoing improvements to enhance user-experience. As an initial step, emphasis is placed on creating a knowledge graph from the bibliographic record collection of the DDB. This paper discusses the challenges facing the DDB in terms of retrieval and the solutions in addressing them. In particular, limitations of the current data model or ontology to represent bibliographic metadata is analyzed through concrete examples. This study presents the complete ontological mapping from DDB-Europeana Data Model (DDB-EDM) to FaBiO, and a prototype of the DDB-KG made available as a SPARQL endpoint. The suitabiliy of the target ontology is demonstrated with SPARQL queries formulated from competency questions.
  • Item
    Harmonising, Harvesting, and Searching Metadata Across a Repository Federation
    (Hannover : TIB Open Publishing, 2023) Neumann, Steffen; Bach, Felix; Castro, Leyla Jael; Fischer, Tillmann; Hofmann, Stefan; Huang, Pei-Chi; Jung, Nicole; Katabathuni, Bhavin; Mauz, Fabian; Meier, René; Nainala, Venkata Chandra Sekhar; Rayya, Noura; Steinbeck, Christoph; Koepler, Oliver
    The collection of metadata for research data is an important aspect in the FAIR principles. The and Bioschemas initiatives created a vocabulary to embed markup for many different types, including BioChemEntity, ChemicalSubstance, Gene, MolecularEntity, Protein, and others relevant in the Natural and Life Sciences with immediate benefits for findability of data packages. To bridge the gap between the worlds of semantic-web-driven JSON+LD metadata on the one hand, and established but separately developed interface services in libraries, we have designed an architecture for harmonising, federating and harvesting metadata from several resources. Our approach is to serve JSON+LD embedded in an XML container through a central OAI-Provider. Several resources in NFDI4Chem provide such domain-specific metadata. The CKAN-based NFDI4Chem search service can harvest this metadata using an OAI-PMH harvester extension that can extract the XML-encapsulated JSON+LD metadata, and has search capabilities relevant in the chemistry domain. We invite the community to collaborate and reach a critical mass of providers and consumers in the NFDI.
  • Item
    Discussion on Existing Standards and Quality Criteria in Nanosafety Research : Summary of the NanoS-QM Expert Workshop
    (Zenodo, 2021) Binder, Kunigunde; Bonatto Minella, Christian; Elberskirchen, Linda; Kraegeloh, Annette; Liebing, Julia; Petzold, Christiane; Razum, Matthias; Riefler, Norbert; Schins, Roel; Sofranko, Adriana; van Thriel, Christoph; Unfried, Klaus
    The partners of the research project NanoS-QM (Quality- and Description Standards for Nanosafety Research Data) identified and invited relevant experts from research institutions, federal agencies, and industry to evaluate the traceability of the results generated with the existing standards and quality criteria. During the discussion it emerged that numerous studies seem to be of insufficient quality for regulatory purposes or exhibit weaknesses with regard to data completeness. Deficiencies in study design could be avoided by more comprehensive use of appropriate standards, many of which already exist. The use of Electronic Laboratory Notebooks (ELNs) that allow for early collection of metadata and enrichment of datasets could be one solution to enable data re-use and simplify quality control. Generally, earlier provision and curation of data and metadata indicating their quality and completeness (e.g. guidelines, standards, standard operating procedures (SOPs) that were used) would improve their findability, accessibility, interoperability, and reusability (FAIR) in the nanosafety research field.
  • Item
    Analyzing social media for measuring public attitudes toward controversies and their driving factors: a case study of migration
    (Wien : Springer, 2022) Chen, Yiyi; Sack, Harald; Alam, Mehwish
    Among other ways of expressing opinions on media such as blogs, and forums, social media (such as Twitter) has become one of the most widely used channels by populations for expressing their opinions. With an increasing interest in the topic of migration in Europe, it is important to process and analyze these opinions. To this end, this study aims at measuring the public attitudes toward migration in terms of sentiments and hate speech from a large number of tweets crawled on the decisive topic of migration. This study introduces a knowledge base (KB) of anonymized migration-related annotated tweets termed as MigrationsKB (MGKB). The tweets from 2013 to July 2021 in the European countries that are hosts of immigrants are collected, pre-processed, and filtered using advanced topic modeling techniques. BERT-based entity linking and sentiment analysis, complemented by attention-based hate speech detection, are performed to annotate the curated tweets. Moreover, external databases are used to identify the potential social and economic factors causing negative public attitudes toward migration. The analysis aligns with the hypothesis that the countries with more migrants have fewer negative and hateful tweets. To further promote research in the interdisciplinary fields of social sciences and computer science, the outcomes are integrated into MGKB, which significantly extends the existing ontology to consider the public attitudes toward migrations and economic indicators. This study further discusses the use-cases and exploitation of MGKB. Finally, MGKB is made publicly available, fully supporting the FAIR principles.
  • Item
    The Case for a Common, Reusable Knowledge Graph Infrastructure for NFDI
    (Hannover : TIB Open Publishing, 2023) Rossenova, Lozana; Schubotz, Moritz; Shigapov, Renat
    The Strategic Research and Innovation Agenda (SRIA) of the European Commission identifies Knowledge Graphs (KGs) as one of the most important technologies for building an interoperability framework and enabling data exchange among users across countries, sectors, and disciplines [1]. KG is a graph-structured knowledge base containing a terminology (vocabulary or ontology) and data entities interrelated via the terminology [2]. KGs are based on semantic web technologies (RDF, SPARQL, etc.) and often used for agile data integration. KGs also play an essential role within Germany as a vehicle to connect research data and research-related entities and make those accessible – examples include the GESIS Knowledge Graph Infrastructure, TIB Open Research Knowledge Graph, and Furthermore, the Wikidata knowledge graph, maintained by Wikimedia Germany, contains a large number of research-related entities and is widely used in scientific knowledge management in addition to being an important advocacy tool for open data [3]. Extending domain-specific ontology-supported KGs with the multidisciplinary, crowdsourced knowledge in Wikidata KG would enable significant applications. The linking between expert knowledge systems and world knowledge empowers lay persons to benefit from high-quality research data and ultimately contributes to increasing confidence in scientific research in society.
  • Item
    Towards Analyzing the Bias of News Recommender Systems Using Sentiment and Stance Detection
    (New York,NY,United States : Association for Computing Machinery, 2022) Alam, Mehwish; Iana, Andreea; Grote, Alexander; Ludwig, Katharina; Müller, Philipp; Paulheim, Heiko; Laforest, Frédérique; Troncy, Raphael; Médini, Lionel; Herman, Ivan
    News recommender systems are used by online news providers to alleviate information overload and to provide personalized content to users. However, algorithmic news curation has been hypothesized to create filter bubbles and to intensify users' selective exposure, potentially increasing their vulnerability to polarized opinions and fake news. In this paper, we show how information on news items' stance and sentiment can be utilized to analyze and quantify the extent to which recommender systems suffer from biases. To that end, we have annotated a German news corpus on the topic of migration using stance detection and sentiment analysis. In an experimental evaluation with four different recommender systems, our results show a slight tendency of all four models for recommending articles with negative sentiments and stances against the topic of refugees and migration. Moreover, we observed a positive correlation between the sentiment and stance bias of the text-based recommenders and the preexisting user bias, which indicates that these systems amplify users' opinions and decrease the diversity of recommended news. The knowledge-aware model appears to be the least prone to such biases, at the cost of predictive accuracy.
  • Item
    Handreichung Urheberrecht und Datenschutz
    (Genève : CERN, 2023) Blumtritt, Ute; Euler, Ellen; Fadeevy, Yuliya; Pohle, Jörg; Rack, Fabian; Wrzesinski, Marcel
    Die vorliegende Handreichung adressiert wissenschaftsgeleitete Zeitschriften sowie herausgebende Einrichtungen. Sie sollen in die Lage versetzt werden, erste urheberrechtliche wie datenschutzrechtliche Fragen zu beantworten und dabei Qualitätsstandards einzuhalten. Dieser Text ersetzt keine Rechtsberatung, sondern bietet grundsätzliche Informationen, gibt Empfehlungen zum Weiterlesen für klassische Fragestellungen und verweist auf gelungene Beispiele im weiteren Feld des wissenschaftsgeleiteten Publizierens.
  • Item
    NFDI4Chem - Fachkonsortium für die Chemie
    (Marburg : Philipps-Universität, 2021) Ortmeyer, Jochen; Schön, Florian; Herres-Pawlis, Sonja; Jung, Nicole; Bach, Felix; Liermann, Johannes; Neumann, Steffen; Popp, Christian; Razum, Matthias; Koepler, Oliver; Steinbeck, Christoph
    Als Fachkonsortium für die Chemie hat sich NFDI4Chem innerhalb der Nationalen Forschungsdateninfrastruktur (NFDI) gebildet. In diesem Beitrag stellt sich das Konsortium kurz vor und legt seine zentralen Ziele und wichtigsten Verbesserungen für das Forschungsdatenmanagement (FDM) in der Chemie sowie die praktischen Heraus-forderungen dar. Die Vision von NFDI4Chem ist die umfassende Digitalisierung und Vernetzung aller Prozesse im Umgang mit Forschungsdaten in der chemischen Forschung. Beginnend mit der Erzeugung der Daten, über deren Verarbeitung und Analyse bis hin zur Publikation wird eine modulare, vernetzte Infrastruktur aus Software-Tools, elektronischen Laborjournalen und Datenrepositorien entwickelt und bereitgestellt, die Forschende im Laboralltag unterstützt. Die Digitalisierung wird begleitet durch die Entwicklung von Minimalinformationen für Datenpublikationen, bestehend unter anderem aus Standards für Daten- und Metadatenformate sowie Ontologien zur semantischen Beschreibung. Seine Aufgaben verfolgt das NFDI4Chem-Konsortium wissenschaftsgeleitet und mit dem klaren Ziel, eine intuitiv und effizient nutzbare Infrastruktur zu entwickeln. Das Gestalten eines kulturellen Wandels, gemeinsam mit der wissenschaftlichen Community, zur Etablierung und Akzeptanz eines FAIRen Umgangsmit Daten ist daher ein weiteres wichtiges Element der NFDI4Chem-Aktivitäten.
  • Item
    Mathematics in Wikidata
    (Aachen, Germany : RWTH Aachen, 2021) Scharpf, Philipp; Schubotz, Moritz; Gipp, Bela; Kaffee, Lucie-Aimée; Razniewski, Simon; Hogan, Aidan
    Documents from Science, Technology, Engineering, and Mathematics (STEM) disciplines usually contain a signicant amount of mathematical formulae alongside text. Some Mathematical Information Retrieval (MathIR) systems, e.g., Mathematical Question Answering (MathQA), exploit knowledge from Wikidata. Therefore, the mathematical information needs to be stored in items. In the last years, there have been efforts to define several properties and seed formulae together with their constituting identifiers into Wikidata. This paper summarizes the current state, challenges, and discussions related to this endeavor. Furthermore, some data mining methods (supervised formula annotation and concept retrieval) and applications (question answering and classification explainability) of the mathematical information are outlined. Finally, we discuss community feedback and issues related to integrating Mathematical Entity Linking (MathEL) into Wikidata and Wikipedia, which was rejected in 33% and 12% of the test cases, for Wikidata and Wikipedia respectively. Our long-term goal is to populate Wikidata, such that it can serve a variety of automated math reasoning tasks and AI systems.