Search Results

Now showing 1 - 10 of 10
  • Item
    High‐Entropy Sulfides as Electrode Materials for Li‐Ion Batteries
    (Weinheim : Wiley-VCH, 2022) Lin, Ling; Wang, Kai; Sarkar, Abhishek; Njel, Christian; Karkera, Guruprakash; Wang, Qingsong; Azmi, Raheleh; Fichtner, Maximilian; Hahn, Horst; Schweidler, Simon; Breitung, Ben
    High-entropy sulfides (HESs) containing 5 equiatomic transition metals (M), with different M:S ratios, are prepared by a facile one-step mechanochemical approach. Two new types of single-phase HESs with pyrite (Pa-3) and orthorhombic (Pnma) structures are obtained and demonstrate a homogeneously mixed solid solution. The straightforward synthesis method can easily tune the desired metal to sulfur ratio for HESs with different stoichiometries, by utilizing the respective metal sulfides, even pure metals, and sulfur as precursor chemicals. The structural details and solid solution nature of HESs are studied by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma optical emission spectroscopy, and Mössbauer spectroscopy. Since transition metal sulfides are a very versatile material class, here the application of HESs is presented as electrode materials for reversible electrochemical energy storage, in which the HESs show high specific capacities and excellent rate capabilities in secondary Li-ion batteries.
  • Item
    Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion
    (Weinheim : Wiley-VCH, 2021) Zhang, Qihao; Huang, Aibin; Ai, Xin; Liao, Jincheng; Song, Qingfeng; Reith, Heiko; Cao, Xun; Fang, Yueping; Schierning, Gabi; Nielsch, Kornelius; Bai, Shengqiang; Chen, Lidong
    Integrating transparent solar-harvesting systems into windows can provide renewable on-site energy supply without altering building aesthetics or imposing further design constraints. Transparent photovoltaics have shown great potential, but the increased transparency comes at the expense of reduced power-conversion efficiency. Here, a new technology that overcomes this limitation by combining solar-thermal-electric conversion with a material's wavelength-selective absorption is presented. A wavelength-selective film consisting of Cs0.33WO3 and resin facilitates high visible-light transmittance (up to 88%) and outstanding ultraviolet and infrared absorbance, thereby converting absorbed light into heat without sacrificing transparency. A prototype that couples the film with thermoelectric power generation produces an extraordinary output voltage of ≈4 V within an area of 0.01 m2 exposed to sunshine. Further optimization design and experimental verification demonstrate high conversion efficiency comparable to state-of-the-art transparent photovoltaics, enriching the library of on-site energy-saving and transparent power generation.
  • Item
    Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials
    (Weinheim : Wiley-VCH, 2021) He, Shiyang; Lehmann, Sebastian; Bahrami, Amin; Nielsch, Kornelius
    Thermoelectric (TE) materials are prominent candidates for energy converting applications due to their excellent performance and reliability. Extensive efforts for improving their efficiency in single-/multi-phase composites comprising nano/micro-scale second phases are being made. The artificial decoration of second phases into the thermoelectric matrix in multi-phase composites, which is distinguished from the second-phase precipitation occurring during the thermally equilibrated synthesis of TE materials, can effectively enhance their performance. Theoretically, the interfacial manipulation of phase boundaries can be extended to a wide range of materials. High interface densities decrease thermal conductivity when nano/micro-scale grain boundaries are obtained and certain electronic structure modifications may increase the power factor of TE materials. Based on the distribution of second phases on the interface boundaries, the strategies can be divided into discontinuous and continuous interfacial modifications. The discontinuous interfacial modifications section in this review discusses five parts chosen according to their dispersion forms, including metals, oxides, semiconductors, carbonic compounds, and MXenes. Alternatively, gas- and solution-phase process techniques are adopted for realizing continuous surface changes, like the core–shell structure. This review offers a detailed analysis of the current state-of-the-art in the field, while identifying possibilities and obstacles for improving the performance of TE materials.
  • Item
    Ordered Mesoporous TiO2 Gyroids: Effects of Pore Architecture and Nb-Doping on Photocatalytic Hydrogen Evolution under UV and Visible Irradiation
    (Weinheim : Wiley-VCH, 2018) Dörr, Tobias Sebastian; Deilmann, Leonie; Haselmann, Greta; Cherevan, Alexey; Zhang, Peng; Blaha, Peter; de Oliveira, Peter William; Kraus, Tobias; Eder, Dominik
    Pure and Nb-doped TiO2 photocatalysts with highly ordered alternating gyroid architecture and well-controllable mesopore size of 15 nm via co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer are synthesized. A combined effort by electron microscopy, X-ray scattering, photoluminescence, X-ray photoelectron spectroscopy, Raman spectroscopy, and density functional theory simulations reveals that the addition of small amounts of Nb results in the substitution of Ti4+ with isolated Nb5+ species that introduces inter-bandgap states, while at high concentrations, Nb prefers to cluster forming shallow trap states within the conduction band minimum of TiO2. The gyroidal photocatalysts are remarkably active toward hydrogen evolution under UV and visible light due to the open 3D network, where large mesopores ensure efficient pore diffusion and high photon harvesting. The gyroids yield unprecedented high evolution rates beyond 1000 µmol h−1 (per 10 mg catalyst), outperforming even the benchmark P25-TiO2 more than fivefold. Under UV light, the Nb-doping reduces the activity due to the introduction of charge recombination centers, while the activity in the visible triple upon incorporation is owed to a more efficient absorption due to inter-bandgap states. This unique pore architecture may further offer hitherto undiscovered optical benefits to photocatalysis, related to chiral and metamaterial-like behavior, which will stimulate further studies focusing on novel light–matter interactions.
  • Item
    The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading
    (Weinheim : Wiley-VCH, 2023) Pameté, Emmanuel; Köps, Lukas; Kreth, Fabian Alexander; Pohlmann, Sebastian; Varzi, Alberto; Brousse, Thierry; Balducci, Andrea; Presser, Volker
    High-performance electrochemical applications have expedited the research in high-power devices. As such, supercapacitors, including electrical double-layer capacitors (EDLCs) and pseudocapacitors, have gained significant attention due to their high power density, long cycle life, and fast charging capabilities. Yet, no device lasts forever. It is essential to understand the mechanisms behind performance degradation and aging so that these bottlenecks can be addressed and tailored solutions can be developed. Herein, the factors contributing to the aging and degradation of supercapacitors, including electrode materials, electrolytes, and other aspects of the system, such as pore blocking, electrode compositions, functional groups, and corrosion of current collectors are examined. The monitoring and characterizing of the performance degradation of supercapacitors, including electrochemical methods, in situ, and ex situ techniques are explored. In addition, the degradation mechanisms of different types of electrolytes and electrode materials and the effects of aging from an industrial application standpoint are analyzed. Next, how electrode degradations and electrolyte decompositions can lead to failure, and pore blocking, electrode composition, and other factors that affect the device's lifespan are examined. Finally, the future directions and challenges for reducing supercapacitors' performance degradation, including developing new materials and methods for characterizing and monitoring the devices are summarized.
  • Item
    Waste Recycling in Thermoelectric Materials
    (Weinheim : Wiley-VCH, 2020) Bahrami, Amin; Schierning, Gabi; Nielsch, Kornelius
    Thermoelectric (TE) technology enables the efficient conversion of waste heat generated in homes, transport, and industry into promptly accessible electrical energy. Such technology is thus finding increasing applications given the focus on alternative sources of energy. However, the synthesis of TE materials relies on costly and scarce elements, which are also environmentally damaging to extract. Moreover, spent TE modules lead to a waste of resources and cause severe pollution. To address these issues, many laboratory studies have explored the synthesis of TE materials using wastes and the recovery of scarce elements from spent modules, e.g., utilization of Si slurry as starting materials, development of biodegradable TE papers, and bacterial recovery and recycling of tellurium from spent TE modules. Yet, the outcomes of such work have not triggered sustainable industrial practices to the extent needed. This paper provides a systematic overview of the state of the art with a view to uncovering the opportunities and challenges for expanded application. Based on this overview, it explores a framework for synthesizing TE materials from waste sources with efficiencies comparable to those made from raw materials.
  • Item
    Interdot Lead Halide Excess Management in PbS Quantum Dot Solar Cells
    (Weinheim : Wiley-VCH, 2022) Albaladejo‐Siguan, Miguel; Becker‐Koch, David; Baird, Elizabeth C.; Hofstetter, Yvonne J.; Carwithen, Ben P.; Kirch, Anton; Reineke, Sebastian; Bakulin, Artem A.; Paulus, Fabian; Vaynzof, Yana
    Light-harvesting devices made from lead sulfide quantum dot (QD) absorbers are one of the many promising technologies of third-generation photovoltaics. Their simple, solution-based fabrication, together with a highly tunable and broad light absorption makes their application in newly developed solar cells, particularly promising. In order to yield devices with reduced voltage and current losses, PbS QDs need to have strategically passivated surfaces, most commonly achieved through lead iodide and bromide passivation. The interdot spacing is then predominantly filled with residual amorphous lead halide species that remain from the ligand exchange, thus hindering efficient charge transport and reducing device stability. Herein, it is demonstrated that a post-treatment by iodide-based 2-phenylethlyammonium salts and intermediate 2D perovskite formation can be used to manage the lead halide excess in the PbS QD active layer. This treatment results in improved device performance and increased shelf-life stability, demonstrating the importance of interdot spacing management in PbS QD photovoltaics.
  • Item
    Grain Boundary Phases in NbFeSb Half-Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials
    (Weinheim : Wiley-VCH, 2023) Bueno Villoro, Ruben; Zavanelli, Duncan; Jung, Chanwon; Mattlat, Dominique Alexander; Hatami Naderloo, Raana; Pérez, Nicolás; Nielsch, Kornelius; Snyder, Gerald Jeffrey; Scheu, Christina; He, Ran; Zhang, Siyuan
    Many thermoelectric materials benefit from complex microstructures. Grain boundaries (GBs) in nanocrystalline thermoelectrics cause desirable reduction in the thermal conductivity by scattering phonons, but often lead to unwanted loss in the electrical conductivity by scattering charge carriers. Therefore, modifying GBs to suppress their electrical resistivity plays a pivotal role in the enhancement of thermoelectric performance, zT. In this work, different characteristics of GB phases in Ti-doped NbFeSb half-Heusler compounds are revealed using a combination of scanning transmission electron microscopy and atom probe tomography. The GB phases adopt a hexagonal close-packed lattice, which is structurally distinct from the half-Heusler grains. Enrichment of Fe is found at GBs in Nb0.95Ti0.05FeSb, but accumulation of Ti dopants at GBs in Nb0.80Ti0.20FeSb, correlating to the bad and good electrical conductivity of the respective GBs. Such resistive to conductive GB phase transition opens up new design space to decouple the intertwined electronic and phononic transport in thermoelectric materials.
  • Item
    Bis(stearoyl) Sulfide: A Stable, Odor-Free Sulfur Precursor for High-Efficiency Metal Sulfide Quantum Dot Photovoltaics
    (Weinheim : Wiley-VCH, 2023) Albaladejo‐Siguan, Miguel; Prudnikau, Anatol; Senina, Alina; Baird, Elizabeth C.; Hofstetter, Yvonne J.; Brunner, Julius; Shi, Juanzi; Vaynzof, Yana; Paulus, Fabian
    The synthesis of metal sulfide nanocrystals is a crucial step in the fabrication of quantum dot (QD) photovoltaics. Control over the QD size during synthesis allows for precise tuning of their optical and electronic properties, making them an appealing choice for electronic applications. This flexibility has led to the implementation of QDs in both highly-efficient single junction solar cells and other optoelectronic devices including photodetectors and transistors. Most commonly, metal sulfide QDs are synthesized using the hot-injection method utilizing a toxic, and air- and moisture-sensitive sulfur source: bis(trimethylsilyl) sulfide ((TMS)2S). Here, bis(stearoyl) sulfide (St2S) is presented as a new type of air-stable sulfur precursor for the synthesis of sulfide-based QDs, which yields uniform, pure, and stable nanocrystals. Photovoltaic devices based on these QDs are equally efficient as those fabricated by (TMS)2S but exhibit enhanced operational stability. These results highlight that St2S can be widely adopted for the synthesis of metal sulfide QDs for a range of optoelectronic applications.
  • Item
    High-Entropy Energy Materials in the Age of Big Data: A Critical Guide to Next-Generation Synthesis and Applications
    (Weinheim : Wiley-VCH, 2021) Wang, Qingsong; Velasco, Leonardo; Breitung, Ben; Presser, Volker
    High-entropy materials (HEMs) with promising energy storage and conversion properties have recently attracted worldwide increasing research interest. Nevertheless, most research on the synthesis of HEMs focuses on a “trial and error” method without any guidance, which is very laborious and time-consuming. This review aims to provide an instructive approach to searching and developing new high-entropy energy materials in a much more efficient way. Toward materials design for future technologies, a fundamental understanding of the process/structure/property/performance linkage on an atomistic level will promote prescreening and selection of material candidates. With the help of computational material science, in which the fast development of computational capabilities that have a rapidly growing impact on new materials design, this fundamental understanding can be approached. Furthermore, high-throughput experimental methods, enabled by the advances in instrumentation and electronics, will accelerate the production of large quantities of results and stimulate the identification of the target products, adding knowledge in computational design. This review shows that combining computational preselection and verification by high-throughput can be an efficient approach to unveil the complexities of HEMs and design novel HEMs with enhanced properties for energy-related applications.