Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Wildlife-vehicle collisions in hurungwe safari area, northern zimbabwe

2020, Gandiwa, Edson, Mashapa, Clayton, Muboko, Never, Chemura, Abel, Kuvaoga, Phillip, Mabika, Cheryl T.

This study is the first to assess wildlife-vehicle collisions (WVC) in Zimbabwe. The study analysed the impact and factors that influence vehicle collisions with large wild mammals along the Harare-Chirundu road section in the protected Hurungwe Safari Area, northern Zimbabwe. Data were retrieved from the Hurungwe Safari Area records and covered the period between 2006 and 2013. Descriptive statistics were used to analyse the recorded variables across the sampled area and to show trends of the prevalence of large wild mammals roadkill over time. Using STATISTICA version 10 for Windows, a two-tailed Mann-Whitney U test was used to determine differences between the number of wild mammal animal roadkills and seasons. A total of 47 large wild mammal animals were killed between 2006 and 2013. The large wild mammal animals that died as a result of vehicle collisions constituted a total of 11 species, with the African buffalo and spotted hyena being the most hit and killed animal species. Most WVC involved heavy haulage trucks and passenger buses. There was no significance difference (P = 0.936) between number of large wild mammal animals killed from WVC between dry and wet seasons. The large wild mammal animals were mostly killed in areas near water sources. We recommend for the inclusion of wildlife protection safeguards in road infrastructure network design and development, particularly on roads that traverse across protected areas in Zimbabwe and beyond. © 2020 The Author(s)

Loading...
Thumbnail Image
Item

Methane emissions from the storage of liquid dairy manure: Influences of season, temperature and storage duration

2021, Cárdenas, Aura, Ammon, Christian, Schumacher, Britt, Stinner, Walter, Herrmann, Christiane, Schneider, Marcel, Weinrich, Sören, Fischer, Peter, Amon, Thomas, Amon, Barbara

Methane emissions from livestock manure are primary contributors to GHG emissions from agriculture and options for their mitigation must be found. This paper presents the results of a study on methane emissions from stored liquid dairy cow manure during summer and winter storage periods. Manure from the summer and winter season was stored under controlled conditions in barrels at ambient temperature to simulate manure storage conditions. Methane emissions from the manure samples from the winter season were measured in two time periods: 0 to 69 and 0 to 139 days. For the summer storage period, the experiments covered four time periods: from 0 to 70, 0 to 138, 0 to 209, and 0 to 279 continuous days, with probing every 10 weeks. Additionally, at the end of all storage experiments, samples were placed into eudiometer batch digesters, and their methane emissions were measured at 20 °C for another 60 days to investigate the potential effect of the aging of the liquid manure on its methane emissions. The experiment showed that the methane emissions from manure stored in summer were considerably higher than those from manure stored in winter. CH4 production started after approximately one month, reaching values of 0.061 kg CH4 kg−1 Volatile Solid (VS) and achieving high total emissions of 0.148 kg CH4 kg−1 VS (40 weeks). In winter, the highest emissions level was 0.0011 kg CH4 kg−1 VS (20 weeks). The outcomes of these experimental measurements can be used to suggest strategies for mitigating methane emissions from manure storage.