Search Results

Now showing 1 - 10 of 38
  • Item
    Integrating climate change adaptation in coastal governance of the Barcelona metropolitan area
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Sauer, Inga J.; Roca, Elisabet; Villares, Míriam
    Coastal cities are exposed to high risks due to climate change, as they are potentially affected by both rising sea levels and increasingly intense and frequent coastal storms. Socio-economic drivers also increase exposure to natural hazards, accelerate environmental degradation, and require adaptive governance structures to moderate negative impacts. Here, we use a social network analysis (SNA) combined with further qualitative information to identify barriers and enablers of adaptive governance in the Barcelona metropolitan area. By analyzing how climate change adaptation is mainstreamed between different administrative scales as well as different societal actors, we can determine the governance structures and external conditions that hamper or foster strategical adaptation plans from being used as operational adaptation tools. We identify a diverse set of stakeholders acting at different administrative levels (local to national), in public administration, science, civil society, and the tourism economy. The metropolitan administration acts as an important bridging organization by promoting climate change adaptation to different interest groups and by passing knowledge between actors. Nonetheless, national adaptation planning fails to take into account local experiences in coastal protection, which leads to an ineffective science policy interaction and limits adaptive management and learning opportunities. Overcoming this is difficult, however, as the effectiveness of local adaptation strategies in the Barcelona metropolitan area is very limited due to a strong centralization of power at the national level and a lack of polycentricity. Due to the high touristic pressure, the legal framework is currently oriented to primarily meet the demands of recreational use and tourism, prioritizing these aspects in daily management practice. Therefore, touristic and economic activities need to be aligned to adaptation efforts, to convert them from barriers into drivers for adaptation action. Our work strongly suggests that more effectively embedding adaptation planning and action into existing legal structures of coastal management would allow strategic adaptation plans to be an effective operational tool for local coastal governance.
  • Item
    A new method to measure real-world respiratory tract deposition of inhaled ambient black carbon
    (Amsterdam [u.a.] : Elsevier Science, 2019) Madueño, Leizel; Kecorius, Simonas; Löndahl, Jakob; Müller, Thomas; Pfeifer, Sascha; Haudek, Andrea; Mardoñez, Valeria; Wiedensohler, Alfred
    In this study, we present the development of a mobile system to measure real-world total respiratory tract deposition of inhaled ambient black carbon (BC). Such information can be used to supplement the existing knowledge on air pollution-related health effects, especially in the regions where the use of standard methods and intricate instrumentation is limited. The study is divided in two parts. Firstly, we present the design of portable system and methodology to evaluate the exhaled air BC content. We demonstrate that under real-world conditions, the proposed system exhibit negligible particle losses, and can additionally be used to determine the minute ventilation. Secondly, exemplary experimental data from the system is presented. A feasibility study was conducted in the city of La Paz, Bolivia. In a pilot experiment, we found that the cumulative total respiratory tract deposition dose over 1-h commuting trip would result in approximately 2.6 μg of BC. This is up to 5 times lower than the values obtained from conjectural approach (e.g. using physical parameters from previously reported worksheets). Measured total respiratory tract deposited BC fraction varied from 39% to 48% during walking and commuting inside a micro-bus, respectively. To the best of our knowledge, no studies focusing on experimental determination of real-world deposition dose of BC have been performed in developing regions. This can be especially important because the BC mass concentration is significant and determines a large fraction of particle mass concentration. In this work, we propose a potential method, recommendations, as well as the limitations in establishing an easy and relatively cheap way to estimate the respiratory tract deposition of BC. In this study we present a novel method to measure real-world respiratory tract deposition dose of Black Carbon. Results from a pilot study in La Paz, Bolivia, are presented. © 2019 The Authors
  • Item
    Representativeness of European biochar research: part I–field experiments
    (Vilnius : Technika, 2017) Verheijen, Frank G. A.; Mankasingh, Utra; Penizek, Vit; Panzacchi, Pietro; Glaser, Bruno; Jeffery, Simon; Bastos, Ana Catarina; Tammeorg, Priit; Kern, Jürgen; Zavalloni, Costanza; Zanchettin, Giulia; Sakrabani, Ruben
    A representativeness survey of existing European Biochar field experiments within the Biochar COST Action TD1107 was conducted to gather key information for setting up future experiments and collaborations, and to minimise duplication of efforts amongst European researchers. Woody feedstock biochar, applied without organic or inorganic fertiliser appears over-represented compared to other categories, especially considering the availability of crop residues, manures, and other organic waste streams and the efforts towards achieving a zero waste economy. Fertile arable soils were also over-represented while shallow unfertile soils were under-represented. Many of the latter are likely in agroforestry or forest plantation land use. The most studied theme was crop production. However, other themes that can provide evidence of mechanisms, as well as potential undesired side-effects, were relatively well represented. Biochar use for soil contamination remediation was the least represented theme; further work is needed to identify which specific contaminants, or mixtures of contaminants, have the potential for remediation by different biochars. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].
  • Item
    Synergistic use of peat and charred material in growing media–an option to reduce the pressure on peatlands?
    (Vilnius : Technika, 2017) Kern, Jürgen; Tammeorg, Priit; Shanskiy, Merrit; Sakrabani, Ruben; Knicker, Heike; Kammann, Claudia; Tuhkanen, Eeva-Maria; Smidt, Geerd; Prasad, Munoo; Tiilikkala, Kari; Sohi, Saran; Gascó, Gabriel; Steiner, Christoph; Glaser, Bruno
    Peat is used as a high quality substrate for growing media in horticulture. However, unsustainable peat extraction damages peatland ecosystems, which disappeared to a large extent in Central and South Europe. Furthermore, disturbed peatlands are becoming a source of greenhouse gases due to drainage and excavation. This study is the result of a workshop within the EU COST Action TD1107 (Biochar as option for sustainable resource management), held in Tartu (Estonia) in 2015. The view of stakeholders were consulted on new biochar-based growing media and to what extent peat may be replaced in growing media by new compounds like carbonaceous materials from thermochemical conversion. First positive results from laboratory and greenhouse experiments have been reported with biochar content in growing media ranging up to 50%. Various companies have already started to use biochar as an additive in their growing media formulations. Biochar might play a more important role in replacing peat in growing media, when biochar is available, meets the quality requirements, and their use is economically feasible. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].
  • Item
    Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs
    (Vilnius : Technika, 2017) Kammann, Claudia; Ippolito, Jim; Hagemann, Nikolas; Borchard, Nils; Cayuela, Maria Luz; Estavillo, José M.; Fuertes-Mendizabal, Teresa; Jeffery, Simon; Kern, Jürgen; Novak, Jeff; Rasse, Daniel; Saarnio, Sanna; Schmidt, Hans-Peter; Spokas, Kurt; Wrage-Mönnig, Nicole
    Agriculture and land use change has significantly increased atmospheric emissions of the non-CO2 green-house gases (GHG) nitrous oxide (N2O) and methane (CH4). Since human nutritional and bioenergy needs continue to increase, at a shrinking global land area for production, novel land management strategies are required that reduce the GHG footprint per unit of yield. Here we review the potential of biochar to reduce N2O and CH4 emissions from agricultural practices including potential mechanisms behind observed effects. Furthermore, we investigate alternative uses of biochar in agricultural land management that may significantly reduce the GHG-emissions-per-unit-of-product footprint, such as (i) pyrolysis of manures as hygienic alternative to direct soil application, (ii) using biochar as fertilizer carrier matrix for underfoot fertilization, biochar use (iii) as composting additive or (iv) as feed additive in animal husbandry or for manure treatment. We conclude that the largest future research needs lay in conducting life-cycle GHG assessments when using biochar as an on-farm management tool for nutrient-rich biomass waste streams. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].
  • Item
    Representativeness of European biochar research: part II–pot and laboratory studies
    (Vilnius : Technika, 2017) Sakrabani, Ruben; Kern, Jürgen; Mankasingh, Utra; Zavalloni, Costanza; Zanchettin, Giulia; Bastos, Ana Catarina; Tammeorg, Priit; Jeffery, Simon; Glaser, Bruno; Verheijen, Frank G. A.
    Biochar research is extensive and there are many pot and laboratory studies carried out in Europe to investigate the mechanistic understanding that govern its impact on soil processes. A survey was conducted in order to find out how representative these studies under controlled experimental conditions are of actual environmental conditions in Europe and biomass availability and conversion technologies. The survey consisted of various key questions related to types of soil and biochar used, experimental conditions and effects of biochar additions on soil chemical, biological and physical properties. This representativeness study showed that soil texture and soil organic carbon contents used by researchers are well reflected in the current biochar research in Europe (through comparison with published literature), but less so for soil pH and soil type. This study provides scope for future work to complement existing research findings, avoiding unnecessary repetitions and highlighting existing research gaps. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].
  • Item
    Editorial: special issue on biochar as an option for sustainable resource management (EU COST Action TD1107 final publication)
    (Vilnius : Technika, 2017) Glaser, Bruno; Baltrėnas, Pranas; Kammann, Claudia; Kern, Jürgen; Baltrėnaitė, Edita
    The articles appearing in this special issue on Biochar as an Option for Sustainable Resource Management are mainly the extended versions of the contributions presented in Biochar COST Action meetings, especially at the International Biochar conference held September 2015 at Geisenheim University (Germany), which was the final conference of the COST Action TD1107. © 2017 Vilnius Gediminas Technical University (VGTU) Press.
  • Item
    Theoretical and paleoclimatic evidence for abrupt transitions in the Earth system
    (Bristol : IOP Publ., 2022) Boers, Niklas; Ghil, Michael; Stocker, Thomas F.
    Specific components of the Earth system may abruptly change their state in response to gradual changes in forcing. This possibility has attracted great scientific interest in recent years, and has been recognized as one of the greatest threats associated with anthropogenic climate change. Examples of such components, called tipping elements, include the Atlantic Meridional Overturning Circulation, the polar ice sheets, the Amazon rainforest, as well as the tropical monsoon systems. The mathematical language to describe abrupt climatic transitions is mainly based on the theory of nonlinear dynamical systems and, in particular, on their bifurcations. Applications of this theory to nonautonomous and stochastically forced systems are a very active field of climate research. The empirical evidence that abrupt transitions have indeed occurred in the past stems exclusively from paleoclimate proxy records. In this review, we explain the basic theory needed to describe critical transitions, summarize the proxy evidence for past abrupt climate transitions in different parts of the Earth system, and examine some candidates for future abrupt transitions in response to ongoing anthropogenic forcing. Predicting such transitions remains difficult and is subject to large uncertainties. Substantial improvements in our understanding of the nonlinear mechanisms underlying abrupt transitions of Earth system components are needed. We argue that such an improved understanding requires combining insights from (a) paleoclimatic records; (b) simulations using a hierarchy of models, from conceptual to comprehensive ones; and (c) time series analysis of recent observation-based data that encode the dynamics of the present-day Earth system components that are potentially prone to tipping.
  • Item
    Corrigendum: The role of storage dynamics in annual wheat prices (2017 Environ. Res. Lett. 12 054005)
    (Bristol : IOP Publ., 2018) Schewe, Jacob; Otto, Christian; Frieler, Katja
    [no abstract available]
  • Item
    Climate impact emergence and flood peak synchronization projections in the Ganges, Brahmaputra and Meghna basins under CMIP5 and CMIP6 scenarios
    (Bristol : IOP Publ., 2022) Gädeke, Anne; Wortmann, Michel; Menz, Christoph; Islam, AKM Saiful; Masood, Muhammad; Krysanova, Valentina; Lange, Stefan; Hattermann, Fred Fokko
    The densely populated delta of the three river systems of the Ganges, Brahmaputra and Meghna is highly prone to floods. Potential climate change-related increases in flood intensity are therefore of major societal concern as more than 40 million people live in flood-prone areas in downstream Bangladesh. Here we report on new flood projections using a hydrological model forced by bias-adjusted ensembles of the latest-generation global climate models of CMIP6 (SSP5-8.5/SSP1-2.6) in comparison to CMIP5 (RCP8.5/RCP2.6). Results suggest increases in peak flow magnitude of 36% (16%) on average under SSP5-8.5 (SSP1-2.6), compared to 60% (17%) under RCP8.5 (RCP2.6) by 2070-2099 relative to 1971-2000. Under RCP8.5/SSP5-8.5 (2070-2099), the largest increase in flood risk is projected for the Ganges watershed, where higher flood peaks become the ‘new norm’ as early as mid-2030 implying a relatively short time window for adaptation. In the Brahmaputra and Meghna rivers, the climate impact signal on peak flow emerges after 2070 (CMIP5 and CMIP6 projections). Flood peak synchronization, when annual peak flow occurs simultaneously at (at least) two rivers leading to large flooding events within Bangladesh, show a consistent increase under both projections. While the variability across the ensemble remains high, the increases in flood magnitude are robust in the study basins. Our findings emphasize the need of stringent climate mitigation policies to reduce the climate change impact on peak flows (as presented using SSP1-2.6/RCP2.6) and to subsequently minimize adverse socioeconomic impacts and adaptation costs. Considering Bangladesh’s high overall vulnerability to climate change and its downstream location, synergies between climate change adaptation and mitigation and transboundary cooperation will need to be strengthened to improve overall climate resilience and achieve sustainable development.