Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Predictability of properties of a fractured geothermal reservoir: the opportunities and limitations of an outcrop analogue study

2017, Bauer, Johanna F., Krumbholz, Michael, Meier, Silke, Tanner, David C.

Minimizing exploration risk in deep geothermics is of great economic importance. Especially, knowledge about temperature and permeability of the reservoir is essential. We test the potential of an outcrop analogue study to minimize uncertainties in prediction of the rock properties of a fractured reservoir in the Upper Rhine Graben. Our results show that although mineralogical composition, clay content, grain size, and fabric type are basically comparable, porosity and quartz cementation are not. Young’s modulus, as observed in the outcrop closest to the reservoir is about twice as high (~ 64 GPa) as observed in the reservoir (~ 34 GPa). Most importantly, however, the parameters that describe the fracture system, which are essential to predict reservoir permeability, differ significantly. While the outcrops are dominated by perpendicular fracture sets (striking NE–SW and NW–SE), two different conjugate fracture sets (striking NW–SE and N–S) occur in the reservoir. Fracture apertures, as reported from the FMI, are one order of magnitude wider than in the outcrop. We conclude that our outcrop analogue study fails to predict important properties of the reservoir (such as permeability and porosity). This must be in part because of the tectonically complex setting of the reservoir. We propose that analogue studies are important, but they must be treated with care when attempting to predict the controlling parameters of a fractured reservoir.

Loading...
Thumbnail Image
Item

New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project

2016, Kottmeier, Christoph, Agnon, Amotz, Al-Halbouni, Djamil, Alpert, Pinhas, Corsmeier, Ulrich, Dahm, Torsten, Eshel, Adam, Geyer, Stefan, Haas, Michael, Holohan, Eoghan, Kalthoff, Norbert, Kishcha, Pavel, Krawczyk, Charlotte, Lati, Joseph, Laronne, Jonathan B., Lott, Friederike, Mallast, Ulf, Merz, Ralf, Metzger, Jutta, Mohsen, Ayman, Morin, Efrat, Nied, Manuela, Rödiger, Tino, Salameh, Elias, Sawarieh, Ali, Shannak, Benbella, Siebert, Christian, Weber, Michael

The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, ~ 1 m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments.

Loading...
Thumbnail Image
Item

S-wave experiments for the exploration of a deep geothermal carbonate reservoir in the German Molasse Basin

2021, Wawerzinek, Britta, Buness, Hermann, von Hartmann, Hartwig, Tanner, David C.

There are many successful geothermal projects that exploit the Upper Jurassic aquifer at 2–3 km depth in the German Molasse Basin. However, up to now, only P-wave seismic exploration has been carried out. In an experiment in the Greater Munich area, we recorded S-waves that were generated by the conventional P-wave seismic survey, using 3C receivers. From this, we built a 3D volume of P- to S-converted (PS) waves using the asymptotic conversion point approach. By combining the P-volume and the resulting PS-seismic volume, we were able to derive the spatial distribution of the vp/vs ratio of both the Molasse overburden and the Upper Jurassic reservoir. We found that the vp/vs ratios for the Molasse units range from 2.0 to 2.3 with a median of 2.15, which is much higher than previously assumed. This raises the depth of hypocenters of induced earthquakes in surrounding geothermal wells. The vp/vs ratios found in the Upper Jurassic vary laterally between 1.5 and 2.2. Since no boreholes are available for verification, we test our results against an independently derived facies classification of the conventional 3D seismic volume and found it correlates well. Furthermore, we see that low vp/vs ratios correlate with high vp and vs velocities. We interpret the latter as dolomitized rocks, which are connected with enhanced permeability in the reservoir. We conclude that 3C registration of conventional P-wave surveys is worthwhile.

Loading...
Thumbnail Image
Item

Porosity estimation of a geothermal carbonate reservoir in the German Molasse Basin based on seismic amplitude inversion

2022, Wadas, Sonja Halina, von Hartmann, Hartwig

The Molasse Basin is one of the most promising areas for deep geothermal exploitation in Germany and the target horizon is the aquifer in the Upper Jurassic carbonates. Carbonate deposits can be very heterogeneous even over a small area due to diagenetic processes and varying depositional environments. The preferential targets for geothermal exploitation in carbonate deposits are fault zones, reef facies and karstified areas, since they are expected to act as hydraulically permeable zones due to high porosity and high permeability. Therefore, identifying these structures and characterizing, e.g., their internal porosity distribution are of high importance. This can be accomplished using 3D reflection seismic data. Besides structural information, 3D seismic surveys provide important reservoir properties, such as acoustic impedance, from which a porosity model can be derived. In our study area in Munich we carried out a seismic amplitude inversion to get an acoustic impedance model of the Upper Jurassic carbonate reservoir using a 3D seismic data set, a corresponding structural geological model, and logging data from six wells at the ‘SchäftlarnstraĂŸe’ geothermal site. The impedance model and porosity logs were than used to calculate a porosity model. The model shows a wide porosity range from 0 to 20% for the entire reservoir zone and the lithology along the wells reveals that dolomitic limestone has the highest porosities and calcareous dolomite has the lowest porosities. The study area is cut by a large W–E striking fault, the Munich Fault, and the footwall north of it shows higher porosities and more intense karstification than the hanging wall to the south. Considering the entire study area, an increase in porosity from east to west is observed. Furthermore, we identified a complex porosity distribution in reef buildups and pinnacle reefs. The reef cores have mostly low porosities of, e.g., < 3% and the highest porosities of up to 7 to 14% are observed at the reef caps and on the reef slopes. The reef slopes show a characteristic interfingering of the reef facies with the surrounding bedded facies, which indicates a syn-sedimentary reef development with slightly varying build up growth rates. We also assessed the reservoir quality with regard to porosity distribution and determined areas with moderate to good quality for geothermal exploitation by defining porosity evaluation levels. The porosity evaluation maps show that the carbonate rocks of Berriasian to Malm ζ1 are preferential targets for exploitation, especially in the footwall of the Munich Fault and to the west of the hanging wall, because these areas are characterized by high porosities due to intense karstification of bedded and massive facies, although the latter is mainly restricted to reef caps and reef slopes.