Search Results

Now showing 1 - 5 of 5
  • Item
    Particulate matter emissions during field application of poultry manure - The influence of moisture content and treatment
    (Amsterdam [u.a.] : Elsevier Science, 2021) Kabelitz, Tina; Biniasch, Oliver; Ammon, Christian; NĂ¼bel, Ulrich; Thiel, Nadine; Janke, David; Swaminathan, Senthilathiban; Funk, Roger; MĂ¼nch, Steffen; Rösler, Uwe; Siller, Paul; Amon, Barbara; Aarnink, AndrĂ© J. A.; Amon, Thomas
    Along with industry and transportation, agriculture is one of the main sources of primary particulate matter (PM) emissions worldwide. Bioaerosol formation and PM release during livestock manure field application and the associated threats to environmental and human health are rarely investigated. In the temperate climate zone, field fertilization with manure seasonally contributes to local PM air pollution regularly twice per year (spring and autumn). Measurements in a wind tunnel, in the field and computational fluid dynamics (CFD) simulations were performed to analyze PM aerosolization during poultry manure application and the influence of manure moisture content and treatment. A positive correlation between manure dry matter content (DM) and PM release was observed. Therefore, treatments strongly increasing the DM of poultry manure should be avoided. However, high manure DM led to reduced microbial abundance and, therefore, to a lower risk of environmental pathogen dispersion. Considering the findings of PM and microbial measurements, the optimal poultry manure DM range for field fertilization was identified as 50–70%. Maximum PM10 concentrations of approx. 10 mg per m3 of air were measured during the spreading of dried manure (DM 80%), a concentration that is classified as strongly harmful. The modeling of PM aerosolization processes indicated a low health risk beyond a distance of 400 m from the manure application source. The detailed knowledge about PM aerosolization during manure field application was improved with this study, enabling manure management optimization for lower PM aerosolization and pathogenic release into the environment.
  • Item
    What makes soil landscape robust? Landscape sensitivity towards land use changes in a Swiss southern Alpine valley
    (Amsterdam [u.a.] : Elsevier Science, 2022) Bettoni, Manuele; Maerker, Michael; Sacchi, Roberto; Bosino, Alberto; Conedera, Marco; Simoncelli, Laura; Vogel, Sebastian
    Landscape sensitivity is a concept referring to the likelihood that changes in land use may affect in an irreversible way physical and chemical soil properties of the concerned landscape. The objective of this study is to quantitatively assess the sensitivity of the southern Alpine soil landscape regarding land use change-induced perturbations. Alpine soil landscapes can be considered as particularly sensitive to land use changes because their effects tend to be enhanced by frequent extreme climatic and topographic conditions as well as intense geomorphologic activity. In detail, the following soil key properties for soil vulnerability were analysed: (i) soil texture, (ii) bulk density, (iii) soil organic carbon (SOC), (iv) saturated hydraulic conductivity (Ksat), (v) aggregate stability and (vi) soil water repellency (SWR). The study area is characterized by a steep, east-west oriented valley, strongly anthropized in the last centuries followed by a progressive abandonment. This area is particularly suitable due to constant lithological conditions, extreme topographic and climatic conditions as well as historic land use changes. The analysis of land use change effects on soil properties were performed through a linear mixed model approach due to the nested structure of the data. Our results show a generally high stability of the assessed soils in terms of aggregate stability and noteworthy thick soils. The former is remarkable, since aggregate stability, which is commonly used for detecting land use-induced changes in soil erosion susceptibility, was always comparably high irrespective of land use. The stability of the soils is mainly related to a high amount of soil organic matter favouring the formation of stable soil aggregates, decreasing soil erodibility and hence, reducing soil loss by erosion. However, the most sensitive soil property to land use change was SWR that is partly influenced by the amount of soil organic carbon and probably by the quality and composition of SOM.
  • Item
    Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems
    (Amsterdam [u.a.] : Elsevier Science, 2021) Ouatahar, Latifa; Bannink, André; Lanigan, Gary; Amon, Barbara
    Feed management decisions are an important element of managing greenhouse gas (GHG) and nitrogen (N) emissions in livestock farming systems. This review aims to a) discuss the impact of feed management practices on emissions in beef and dairy production systems and b) assess different modelling approaches used for quantifying the impact of these abatement measures at different stages of the feed and manure management chain. Statistical and empirical models are well-suited for practical applications when evaluating mitigation strategies, such as GHG calculator tools for farmers and for inventory purposes. Process-based simulation models are more likely to provide insights into the impact of biotic and abiotic drivers on GHG and N emissions. These models are based on equations which mathematically describe processes such as fermentation, aerobic and anaerobic respiration, denitrification, etc. and require a greater number of input parameters. Ultimately, the modelling approach used will be determined by a) the activity input data available, b) the temporal and spatial resolution required and c) the suite of emissions being studied. Simulation models are likely candidates to be able to better explain variation in on-farm GHG and N emissions, and predict with a higher accuracy for a specific mitigation measure under defined farming conditions, due to the fact that they better represent the underlying mechanisms causal for emissions. Integrated farm system models often make use of rather generic values or empirical models to quantify individual emissions sources, whereas combining a whole set of process-based models (or their results) that simulates the variation in GHG and N emissions and the associated whole farm budget has not been used. The latter represents a valuable approach to delineate underlying processes and their drivers within the system and to evaluate the integral effect on GHG emissions with different mitigation options.
  • Item
    Enzymatic degradation of polyethylene terephthalate nanoplastics analyzed in real time by isothermal titration calorimetry
    (Amsterdam [u.a.] : Elsevier Science, 2021) Vogel, Kristina; Wei, Ren; Pfaff, Lara; Breite, Daniel; Al-Fathi, Hassan; Ortmann, Christian; Estrela-Lopis, Irina; Venus, Tom; Schulze, Agnes; Harms, Hauke; Bornscheuer, Uwe T.; Maskow, Thomas
    Plastics are globally used for a variety of benefits. As a consequence of poor recycling or reuse, improperly disposed plastic waste accumulates in terrestrial and aquatic ecosystems to a considerable extent. Large plastic waste items become fragmented to small particles through mechanical and (photo)chemical processes. Particles with sizes ranging from millimeter (microplastics, <5 mm) to nanometer (nanoplastics, NP, <100 nm) are apparently persistent and have adverse effects on ecosystems and human health. Current research therefore focuses on whether and to what extent microorganisms or enzymes can degrade these NP. In this study, we addressed the question of what information isothermal titration calorimetry, which tracks the heat of reaction of the chain scission of a polyester, can provide about the kinetics and completeness of the degradation process. The majority of the heat represents the cleavage energy of the ester bonds in polymer backbones providing real-time kinetic information. Calorimetry operates even in complex matrices. Using the example of the cutinase-catalyzed degradation of polyethylene terephthalate (PET) nanoparticles, we found that calorimetry (isothermal titration calorimetry-ITC) in combination with thermokinetic models is excellently suited for an in-depth analysis of the degradation processes of NP. For instance, we can separately quantify i) the enthalpy of surface adsorption ∆AdsH = 129 ± 2 kJ mol−1, ii) the enthalpy of the cleavage of the ester bonds ∆EBH = −58 ± 1.9 kJ mol−1 and the apparent equilibrium constant of the enzyme substrate complex K = 0.046 ± 0.015 g L−1. It could be determined that the heat production of PET NP degradation depends to 95% on the reaction heat and only to 5% on the adsorption heat. The fact that the percentage of cleaved ester bonds (η = 12.9 ± 2.4%) is quantifiable with the new method is of particular practical importance. The new method promises a quantification of enzymatic and microbial adsorption to NP and their degradation in mimicked real-world aquatic conditions.
  • Item
    New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project
    (Amsterdam [u.a.] : Elsevier Science, 2016) Kottmeier, Christoph; Agnon, Amotz; Al-Halbouni, Djamil; Alpert, Pinhas; Corsmeier, Ulrich; Dahm, Torsten; Eshel, Adam; Geyer, Stefan; Haas, Michael; Holohan, Eoghan; Kalthoff, Norbert; Kishcha, Pavel; Krawczyk, Charlotte; Lati, Joseph; Laronne, Jonathan B.; Lott, Friederike; Mallast, Ulf; Merz, Ralf; Metzger, Jutta; Mohsen, Ayman; Morin, Efrat; Nied, Manuela; Rödiger, Tino; Salameh, Elias; Sawarieh, Ali; Shannak, Benbella; Siebert, Christian; Weber, Michael
    The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, ~ 1 m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments.