Search Results

Now showing 1 - 10 of 10
  • Item
    Chapter scientists in the IPCC AR5-experience and lessons learned
    (Amsterdam [u.a.] : Elsevier, 2015) Schulte-Uebbing, Lena; Hansen, Gerrit; Hernández, Ariel Macaspac; Winter, Marten
    IPCC Assessment Reports provide timely and accurate information on anthropogenic climate change to policy makers and the public. The reports are written by hundreds of scientists in a voluntary, collaborative effort. Growing amounts of literature and complex procedural and administrative requirements, however, make this effort a substantial management challenge next to a scientific one. During the 5th Assessment Cycle, IPCC Working Groups II and III initiated a program that recruited volunteer scientific assistants who provided technical and logistical support to author teams. In this paper we describe and analyze strengths and weaknesses of this ‘Chapter Scientist program’, based on an extensive survey among Chapter Scientists (CS) and interviews with other stakeholders. We conclude that the program was a useful innovation that that enabled authors to focus more on their core scientific tasks and that contributed to improving the quality of the assessment. We highly recommend similar programs for future scientific assessments. Key criteria for success that we identified are (a) involvement of early-career scientists as CS, (b) close integration of CS in the assessment process, (c) recruitment of CS through an open call to achieve transparency, and (d) provision of funds for such a program to support travel costs and compensation of CS.
  • Item
    Climate change impacts on European arable crop yields: Sensitivity to assumptions about rotations and residue management
    (Amsterdam [u.a.] : Elsevier, 2022) Faye, Babacar; Webber, Heidi; Gaiser, Thomas; Müller, Christoph; Zhang, Yinan; Stella, Tommaso; Latka, Catharina; Reckling, Moritz; Heckelei, Thomas; Helming, Katharina; Ewert, Frank
    Most large scale studies assessing climate change impacts on crops are performed with simulations of single crops and with annual re-initialization of the initial soil conditions. This is in contrast to the reality that crops are grown in rotations, often with sizable proportion of the preceding crop residue to be left in the fields and varying soil initial conditions from year to year. In this study, the sensitivity of climate change impacts on crop yield and soil organic carbon to assumptions about annual model re-initialization, specification of crop rotations and the amount of residue retained in fields was assessed for seven main crops across Europe. Simulations were conducted for a scenario period 2040–2065 relative to a baseline from 1980 to 2005 using the SIMPLACE1 framework. Results indicated across Europe positive climate change impacts on yield for C3 crops and negative impacts for maize. The consideration of simulating rotations did not have a benefit on yield variability but on relative yield change in response to climate change which slightly increased for C3 crops and decreased for C4 crops when rotation was considered. Soil organic carbon decreased under climate change in both simulations assuming a continuous monocrop and plausible rotations by between 1% and 2% depending on the residue management strategy.
  • Item
    NaOH protective layer for a stable sodium metal anode in liquid electrolytes
    (Amsterdam [u.a.] : Elsevier, 2024) Thomas, Alexander; Pohle, Björn; Schultz, Johannes; Hantusch, Martin; Mikhailova, Daria
    Sodium is known as a soft metal that can easily change its particle morphology. It can form outstretched and rolled fibers with plastic or brittle behavior, and cubes. In Na-batteries, metallic Na anodes demonstrate a high reactivity towards the majority of electrolyte solutions, volume change and a random deposition process from the electrolyte, accompanied by dendrite formation. In order to smooth the electrochemical Na deposition, we propose NaOH as a simple artificial protective layer for sodium, formed by its exposure to ambient conditions for a certain period of time. The formed NaOH layer on top of the metallic sodium suppresses the volume change and dendrite growth on the sodium surface. Additionally, the protected sodium does not change its morphology after a prolonged contact with carbonate-based electrolytes. In symmetric Na-batteries, the NaOH layer increases the lifetime of the electrochemical cell by eight times in comparison to non-protected Na. In the full-cell with a layered sodium oxide cathode, the NaOH-protected sodium anode also leads to a high cycling stability, providing 81 % of the initial cell capacity after 500 cycles with a 1C current rate. In contrast, batteries with a non-protected Na-anode reach only 20 % of their initial capacity under the same conditions. Therefore, the main benefits of the NaOH artificial layer are the chemical compatibility with the carbonate-based electrolytes, the protection of Na metal against reaction with the electrolyte solution, the rapid Na-ion diffusion through the layer and the formation of a mechanical barrier, mitigating Na-dendrite growth. This work presents an easily scalable method to protect sodium without any additional chemicals or a special environment for this reaction.
  • Item
    The social cost of carbon and inequality: When local redistribution shapes global carbon prices
    (Amsterdam [u.a.] : Elsevier, 2021) Kornek, Ulrike; Klenert, David; Edenhofer, Ottmar; Fleurbaey, Marc
    The social cost of carbon is a central metric for optimal carbon prices. Previous literature shows that inequality significantly influences the social cost of carbon, but mostly omits heterogeneity below the national level. We present an optimal taxation model of the social cost of carbon that accounts for inequality between and within countries. We find that climate and distributional policy can generally not be separated. If only one country does not compensate low-income households for disproportionate damages, the social cost of carbon tends to increase globally. Optimal carbon prices remain roughly unchanged if national redistribution leaves inequality between households unaffected by climate change and if the utility of households is approximately logarithmic in consumption.
  • Item
    A protocol to develop Shared Socio-economic Pathways for European agriculture
    (Amsterdam [u.a.] : Elsevier, 2019) Mitter, Hermine; Techen, Anja-K.; Sinabell, Franz; Helming, Katharina; Kok, Kasper; Priess, Jörg A.; Schmid, Erwin; Bodirsky, Benjamin L.; Holman, Ian; Lehtonen, Heikki; Leip, Adrian; Le Mouël, Chantal; Mehdi, Bano; Michetti, Melania; Mittenzwei, Klaus; Mora, Olivier; Øygarden, Lillian; Reidsma, Pytrik; Schaldach, Rüdiger; Schönhart, Martin
    Moving towards a more sustainable future requires concerted actions, particularly in the context of global climate change. Integrated assessments of agricultural systems (IAAS) are considered valuable tools to provide sound information for policy and decision-making. IAAS use storylines to define socio-economic and environmental framework assumptions. While a set of qualitative global storylines, known as the Shared Socio-economic Pathways (SSPs), is available to inform integrated assessments at large scales, their spatial resolution and scope is insufficient for regional studies in agriculture. We present a protocol to operationalize the development of Shared Socio-economic Pathways for European agriculture – Eur-Agri-SSPs – to support IAAS. The proposed design of the storyline development process is based on six quality criteria: plausibility, vertical and horizontal consistency, salience, legitimacy, richness and creativity. Trade-offs between these criteria may occur. The process is science-driven and iterative to enhance plausibility and horizontal consistency. A nested approach is suggested to link storylines across scales while maintaining vertical consistency. Plausibility, legitimacy, salience, richness and creativity shall be stimulated in a participatory and interdisciplinary storyline development process. The quality criteria and process design requirements are combined in the protocol to increase conceptual and methodological transparency. The protocol specifies nine working steps. For each step, suitable methods are proposed and the intended level and format of stakeholder engagement are discussed. A key methodological challenge is to link global SSPs with regional perspectives provided by the stakeholders, while maintaining vertical consistency and stakeholder buy-in. We conclude that the protocol facilitates systematic development and evaluation of storylines, which can be transferred to other regions, sectors and scales and supports inter-comparisons of IAAS. © 2019 Elsevier Ltd
  • Item
    The impact of climate conditions on economic production. Evidence from a global panel of regions
    (Amsterdam [u.a.] : Elsevier, 2020) Kalkuhl, Matthias; Wenz, Leonie
    We present a novel data set of subnational economic output, Gross Regional Product (GRP), for more than 1500 regions in 77 countries that allows us to empirically estimate historic climate impacts at different time scales. Employing annual panel models, long-difference regressions and cross-sectional regressions, we identify effects on productivity levels and productivity growth. We do not find evidence for permanent growth rate impacts but we find robust evidence that temperature affects productivity levels considerably. An increase in global mean surface temperature by about 3.5°C until the end of the century would reduce global output by 7–14% in 2100, with even higher damages in tropical and poor regions. Updating the DICE damage function with our estimates suggests that the social cost of carbon from temperature-induced productivity losses is on the order of 73–142$/tCO2 in 2020, rising to 92–181$/tCO2 in 2030. These numbers exclude non-market damages and damages from extreme weather events or sea-level rise. © 2020 The Authors
  • Item
    Land-use futures in the shared socio-economic pathways
    (Amsterdam [u.a.] : Elsevier, 2017) Popp, Alexander; Calvin, Katherine; Fujimori, Shinichiro; Havlik, Petr; Humpenöder, Florian; Stehfest, Elke; Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Doelmann, Jonathan C.; Gusti, Mykola; Hasegawa, Tomoko; Kyle, Page; Obersteiner, Michael; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Waldhoff, Stephanie; Weindl, Isabelle; Wise, Marshall; Kriegler, Elmar; Lotze-Campen, Hermann; Fricko, Oliver; Riahi, Keywan; Vuuren, Detlef P. van
    In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis. © 2016 The Authors
  • Item
    Improving the evidence base: A methodological review of the quantitative climate migration literature
    (Amsterdam [u.a.] : Elsevier, 2021) Hoffmann, Roman; Šedová, Barbora; Vinke, Kira
    The question whether and how climatic factors influence human migration has gained both academic and public interest in the past years. Based on two meta-analyses, this paper systematically reviews the quantitative empirical literature on climate-related migration from a methodological perspective. In total, information from 127 original micro- and macro-level studies is analyzed to assess how different concepts, research designs, and analytical methods shape our understanding of climate migration. We provide an overview of common methodological approaches and present evidence on their potential implications for the estimation of climatic impacts. We identify five key challenges, which relate to the i) measurement of migration and ii) climatic events, iii) the integration and aggregation of data, iv) the identification of causal relationships, and v) the exploration of contextual influences and mechanisms. Advances in research and modelling are discussed together with best practice cases to provide guidance to researchers studying the climate-migration nexus. We recommend for future empirical studies to employ approaches that are of relevance for and reflect local contexts, ensuring high levels of comparability and transparency.
  • Item
    Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development
    (Amsterdam [u.a.] : Elsevier, 2022) Magalhães Filho, L.N.L.; Roebeling, P.C.; Costa, L.F.C.; de Lima, L.T.
    Uncertainties about the future extent of sea-level rise (SLR) and socioeconomic development will determine the future of coastal ecosystem services and values. This study analyzes the joint impact of flooding and socioeconomic development on the future ecosystem services and values in the Atlantic coastal zone by 2100. To this end, flood probability maps (using the Uncertainty Bathtub Model; uBTM) and local ecosystem service value (ESV) estimates (using meta-analytic based global ecosystem service value functions for Provisioning, Regulating & maintenance, and Cultural ecosystem services across 12 biomes) are derived for a wide combination of Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathways (SSP) scenarios to obtain future values of coastal ecosystem services (ES). Results show that the higher potential of ESV at risk is associated with RCP 8.5 and SSP5, i.e. the scenario associated with a narrative related to fossil-fueled development. For this scenario, by 2100, the coastal zone with the highest probable losses in Provisioning ESV is Europe (∼5.9 € billion/year), for Regulating & maintenance ESV this is North America (∼6.0 € billion/year) and for Cultural ESV this is South America (∼21.3 € billion/year). Countries facing highest relative risk of losing Provisioning ESV are the Netherlands (10.6 %), United States (7.4 %), and Mauritania (5.8 %). For Regulating & maintenance ESV, the top 3 countries impacted are Mauritania (17.6 %), the Netherlands (10.0 %) and Argentina (8.0 %). For Cultural ESV, the countries are Mexico (19.0 %), Denmark (18.1 %) and Sweden (15.6 %). Changes in ESV are exponentially related to flood risk and economic growth, such that small changes in flood or income lead to large changes in ESV. Unlike previous studies, the ESV functions used are dependent on time and local factors, such as population and income. Although population and income growth result in an increase in ESV, it also emphasizes the ecosystem service values at risk. Thus, sea-level rise and socioeconomic changes impact ecosystem services and values – directly affecting the well-being of the world population. The unequal distribution of coastal ecosystem service value losses across continents and countries highlighted in this work is important to identify what values are at risk and for whom. Adaptation measures and strategies can, in turn, be defined.
  • Item
    Integrating data and analysis technologies within leading environmental research infrastructures: Challenges and approaches
    (Amsterdam [u.a.] : Elsevier, 2021) Huber, Robert; D'Onofrio, Claudio; Devaraju, Anusuriya; Klump, Jens; Loescher, Henry W.; Kindermann, Stephan; Guru, Siddeswara; Grant, Mark; Morris, Beryl; Wyborn, Lesley; Evans, Ben; Goldfarb, Doron; Genazzio, Melissa A.; Ren, Xiaoli; Magagna, Barbara; Thiemann, Hannes; Stocker, Markus
    When researchers analyze data, it typically requires significant effort in data preparation to make the data analysis ready. This often involves cleaning, pre-processing, harmonizing, or integrating data from one or multiple sources and placing them into a computational environment in a form suitable for analysis. Research infrastructures and their data repositories host data and make them available to researchers, but rarely offer a computational environment for data analysis. Published data are often persistently identified, but such identifiers resolve onto landing pages that must be (manually) navigated to identify how data are accessed. This navigation is typically challenging or impossible for machines. This paper surveys existing approaches for improving environmental data access to facilitate more rapid data analyses in computational environments, and thus contribute to a more seamless integration of data and analysis. By analysing current state-of-the-art approaches and solutions being implemented by world‑leading environmental research infrastructures, we highlight the existing practices to interface data repositories with computational environments and the challenges moving forward. We found that while the level of standardization has improved during recent years, it still is challenging for machines to discover and access data based on persistent identifiers. This is problematic in regard to the emerging requirements for FAIR (Findable, Accessible, Interoperable, and Reusable) data, in general, and problematic for seamless integration of data and analysis, in particular. There are a number of promising approaches that would improve the state-of-the-art. A key approach presented here involves software libraries that streamline reading data and metadata into computational environments. We describe this approach in detail for two research infrastructures. We argue that the development and maintenance of specialized libraries for each RI and a range of programming languages used in data analysis does not scale well. Based on this observation, we propose a set of established standards and web practices that, if implemented by environmental research infrastructures, will enable the development of RI and programming language independent software libraries with much reduced effort required for library implementation and maintenance as well as considerably lower learning requirements on users. To catalyse such advancement, we propose a roadmap and key action points for technology harmonization among RIs that we argue will build the foundation for efficient and effective integration of data and analysis.