Search Results

Now showing 1 - 5 of 5
  • Item
    Saltwater intrusion under climate change in North-Western Germany - mapping, modelling and management approaches in the projects TOPSOIL and go-CAM
    (Les Ulis : EDP Sciences, 2018) Wiederhold, Helga; Scheer, Wolfgang; Kirsch, Reinhard; Azizur Rahman, M.; Ronczka, Mathias; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    Climate change will result in rising sea level and, at least for the North Sea region, in rising groundwater table. This leads to a new balance at the fresh–saline groundwater boundary and a new distribution of saltwater intrusions with strong regional differentiations. These effects are investigated in several research projects funded by the European Union and the German Federal Ministry of Education and Research (BMBF). Objectives and some results from the projects TOPSOIL and go-CAM are presented in this poster.
  • Item
    Long-time resistivity monitoring of a freshwater/saltwater transition zone using the vertical electrode system SAMOS
    (Les Ulis : EDP Sciences, 2018) Grinat, Michael; Epping, Dieter; Meyer, Robert; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    In September 2009 two newly developed vertical electrode systems were installed in boreholes in the water catchment areas Waterdelle and Ostland at the North Sea island Borkum to monitor possible changes of the transition zone between the freshwater lens and the underlying saltwater. The vertical electrode systems, which were both installed between 44 m and 65 m below ground level, are used for geoelectrical multi-electrode measurements carried out automatically several times per day; the measurements are still ongoing. The whole system consisting of a vertical electrode system in a borehole and the measuring unit at ground level is called SAMOS (Saltwater Monitoring System). At both locations the data show a clear resistivity decrease that indicates the transition zone between freshwater and saltwater. The depth of the transition zone as well as the kind of resistivity decrease is very stable since 2010. Temporal changes are visible if single depths are considered. In 2015 Miriam Ibenthal used a vertical 2D density-dependent groundwater flow model to explain the long-term resistivity measurements and showed that the temporal changes at CLIWAT 2 (Ostland) could be explained by variations of the groundwater level, changing groundwater recharge rates and changing pumping rates of the nearby located drinking water supply wells.
  • Item
    Modeling saltwater intrusion scenarios for a coastal aquifer at the German North Sea
    (Les Ulis : EDP Sciences, 2018) Schneider, A.; Zhao, H.; Wolf, J.; Logashenko, D.; Reiter, S.; Howahr, M.; Eley, M.; Gelleszun, M.; Wiederhold, H.; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    A 3d regional density-driven flow model of a heterogeneous aquifer system at the German North Sea Coast is set up within the joint project NAWAK (“Development of sustainable adaption strategies for the water supply and distribution infrastructure on condition of climatic and demographic change”). The development of the freshwater-saltwater interface is simulated for three climate and demographic scenarios. Groundwater flow simulations are performed with the finite volume code d3f++ (distributed density driven flow) that has been developed with a view to the modelling of large, complex, strongly density-influenced aquifer systems over long time periods.
  • Item
    Characterization of a regional coastal zone aquifer using an interdisciplinary approach – an example from Weser-Elbe region, Lower Saxony, Germany
    (Les Ulis : EDP Sciences, 2018) Rahman, Mohammad Azizur; González, Eva; Wiederhold, Helga; Deus, Nico; Elbracht, Jörg; Siemon, Bernhard; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    In this study, interdisciplinary approaches are considered to characterize the coastal zone aquifer of the Elbe-Weser region in the North of Lower Saxony, Germany. Geological, hydrogeological, geochemical and geophysical information have been considered to analyze the current status of the aquifers. All the information collectively states that the salinity distribution in the subsurface is heterogeneous both horizontally and vertically. Early age flooding also contributed to this heterogeneity. No general classification of groundwater quality (according to some piper diagrams) could be identified. Helicopter-borne electro-magnetic data clearly show the presence of freshwater reserves below the sea near the west coast. Groundwater recharge largely happens in the moraine ridges (west side of the area) where both the surface elevation and the groundwater level are high. Consequently, submarine groundwater discharge occurs from the same place. All these information will facilitate to develop the planned density driven groundwater flow and transport model for the study area.
  • Item
    Advancing environmental intelligence through novel approaches in soft bioinspired robotics and allied technologies: I-Seed project position paper for Environmental Intelligence in Europe
    (New York,NY,United States : Association for Computing Machinery, 2022) Mazzolai, Barbara; Kraus, Tobias; Pirrone, Nicola; Kooistra, Lammert; De Simone, Antonio; Cottin, Antoine; Margheri, Laura
    The EU-funded FET Proactive Environmental Intelligence project "I-Seed"(Grant Agreement n. 101017940, https://www.iseedproject.eu/) targets towards the development of a radically simplified and environmentally friendly approach for environmental monitoring. Specifically, I-Seed aims at developing a new generation of self-deployable and biodegradable soft miniaturized robots, inspired by the morphology and dispersion abilities of plant seeds, able to perform low-cost, environmentally responsible, in-situ measurements. The natural functional mechanisms of seeds dispersal offer a rich source of robust, highly adaptive, mass and energy efficient mechanisms, and behavioral and morphological intelligence, which can be selected and implemented for advanced, but simple, technological inventions. I-Seed robots are conceived as unique in their movement abilities because inspired by passive mechanisms and materials of natural seeds, and unique in their environmentally friendly design because made of all biodegradable components. Sensing is based on a chemical transduction mechanism in a stimulus-responsive sensor material with fluorescence-based optical readout, which can be read via one or more drones equipped with fluorescent LiDAR technology and a software able to perform a real time georeferencing of data. The I-Seed robotic ecosystem is envisioned to be used for collecting environmental data in-situ with high spatial and temporal resolution across large remote areas where no monitoring data are available, and thus for extending current environmental sensor frameworks and data analysis systems.