Search Results

Now showing 1 - 10 of 15
  • Item
    Weibull-distributed dyke thickness reflects probabilistic character of host-rock strength
    ([London] : Nature Publishing Group UK, 2014) Krumbholz, Michael; Hieronymus, Christoph F.; Burchardt, Steffi; Troll, Valentin R.; Tanner, David C.; Friese, Nadine
    Magmatic sheet intrusions (dykes) constitute the main form of magma transport in the Earth’s crust. The size distribution of dykes is a crucial parameter that controls volcanic surface deformation and eruption rates and is required to realistically model volcano deformation for eruption forecasting. Here we present statistical analyses of 3,676 dyke thickness measurements from different tectonic settings and show that dyke thickness consistently follows the Weibull distribution. Known from materials science, power law-distributed flaws in brittle materials lead to Weibull-distributed failure stress. We therefore propose a dynamic model in which dyke thickness is determined by variable magma pressure that exploits differently sized host-rock weaknesses. The observed dyke thickness distributions are thus site-specific because rock strength, rather than magma viscosity and composition, exerts the dominant control on dyke emplacement. Fundamentally, the strength of geomaterials is scale-dependent and should be approximated by a probability distribution.
  • Item
    A tale of shifting relations: East Asian summer and winter monsoon variability during the Holocene
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Kaboth-Bahr, Stefanie; Bahr, André; Zeeden, Christian; Yamoah, Kweku A.; Lone, Mahjoor Ahmad; Chuang, Chih-Kai; Löwemark, Ludvig; Wei, Kuo-Yen
    Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Niño-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.
  • Item
    Organic carbon burial is paced by a ∼173-ka obliquity cycle in the middle to high latitudes
    (Washington, DC [u.a.] : Assoc., 2021) Huang, He; Gao, Yuan; Ma, Chao; Jones, Matthew M.; Zeeden, Christian; Ibarra, Daniel E.; Wu, Huaichun; Wang, Chengshan
    Earth’s climate system is complex and inherently nonlinear, which can induce some extraneous cycles in paleoclimatic proxies at orbital time scales. The paleoenvironmental consequences of these extraneous cycles are debated owing to their complex origin. Here, we compile high-resolution datasets of total organic carbon (TOC) and stable carbon isotope (δ13Corg) datasets to investigate organic carbon burial processes in middle to high latitudes. Our results document a robust cyclicity of ~173 thousand years (ka) in both TOC and δ13Corg. The ~173-ka obliquity–related forcing signal was amplified by internal climate feedbacks of the carbon cycle under different geographic and climate conditions, which control a series of sensitive climatic processes. In addition, our new and compiled records from multiple proxies confirm the presence of the obliquity amplitude modulation (AM) cycle during the Mesozoic and Cenozoic and indicate the usefulness of the ~173-ka cycle as geochronometer and for paleoclimatic interpretation.
  • Item
    Warming assessment of the bottom-up Paris Agreement emissions pledges
    ([London] : Nature Publishing Group UK, 2018) Robiou du Pont, Yann; Meinshausen, Malte
    Under the bottom-up architecture of the Paris Agreement, countries pledge Nationally Determined Contributions (NDCs). Current NDCs individually align, at best, with divergent concepts of equity and are collectively inconsistent with the Paris Agreement. We show that the global 2030-emissions of NDCs match the sum of each country adopting the least-stringent of five effort-sharing allocations of a well-below 2 °C-scenario. Extending such a self-interested bottom-up aggregation of equity might lead to a median 2100-warming of 2.3 °C. Tightening the warming goal of each country’s effort-sharing approach to aspirational levels of 1.1 °C and 1.3 °C could achieve the 1.5 °C and well-below 2 °C-thresholds, respectively. This new hybrid allocation reconciles the bottom-up nature of the Paris Agreement with its top-down warming thresholds and provides a temperature metric to assess NDCs. When taken as benchmark by other countries, the NDCs of India, the EU, the USA and China lead to 2.6 °C, 3.2 °C, 4 °C and over 5.1 °C warmings, respectively.
  • Item
    The influence of Arctic amplification on mid-latitude summer circulation
    ([London] : Nature Publishing Group UK, 2018) Coumou, D.; Di Capua, G.; Vavrus, S.; Wang, L.; Wang, S.
    Accelerated warming in the Arctic, as compared to the rest of the globe, might have profound impacts on mid-latitude weather. Most studies analyzing Arctic links to mid-latitude weather focused on winter, yet recent summers have seen strong reductions in sea-ice extent and snow cover, a weakened equator-to-pole thermal gradient and associated weakening of the mid-latitude circulation. We review the scientific evidence behind three leading hypotheses on the influence of Arctic changes on mid-latitude summer weather: Weakened storm tracks, shifted jet streams, and amplified quasi-stationary waves. We show that interactions between Arctic teleconnections and other remote and regional feedback processes could lead to more persistent hot-dry extremes in the mid-latitudes. The exact nature of these non-linear interactions is not well quantified but they provide potential high-impact risks for society.
  • Item
    Intercomparison of regional loss estimates from global synthetic tropical cyclone models
    ([London] : Nature Publishing Group UK, 2022) Meiler, Simona; Vogt, Thomas; Bloemendaal, Nadia; Ciullo, Alessio; Lee, Chia-Ying; Camargo, Suzana J.; Emanuel, Kerry; Bresch, David N.
    Tropical cyclones (TCs) cause devastating damage to life and property. Historical TC data is scarce, complicating adequate TC risk assessments. Synthetic TC models are specifically designed to overcome this scarcity. While these models have been evaluated on their ability to simulate TC activity, no study to date has focused on model performance and applicability in TC risk assessments. This study performs the intercomparison of four different global-scale synthetic TC datasets in the impact space, comparing impact return period curves, probability of rare events, and hazard intensity distribution over land. We find that the model choice influences the costliest events, particularly in basins with limited TC activity. Modelled direct economic damages in the North Indian Ocean, for instance, range from 40 to 246 billion USD for the 100-yr event over the four hazard sets. We furthermore provide guidelines for the suitability of the different synthetic models for various research purposes.
  • Item
    Phase coherence between precipitation in South America and Rossby waves
    (Washington, DC [u.a.] : Assoc., 2018) Gelbrecht, Maximilian; Boers, Niklas; Kurths, JĂ¼rgen
    The dominant mode of intraseasonal precipitation variability during the South American monsoon is the so-called precipitation dipole between the South Atlantic convergence zone (SACZ) and southeastern South America (SESA). It affects highly populated areas that are of substantial importance for the regional food supplies. Previous studies using principal components analysis or complex networks were able to describe and characterize this variability pattern, but crucial questions regarding the responsible physical mechanism remain open. Here, we use phase synchronization techniques to study the relation between precipitation in the SACZ and SESA on the one hand and southern hemisphere Rossby wave trains on the other hand. In combination with a conceptual model, this approach demonstrates that the dipolar precipitation pattern is caused by the southern hemisphere Rossby waves. Our results thus show that Rossby waves are the main driver of the monsoon season variability in South America, a finding that has important implications for synoptic-scale weather forecasts.
  • Item
    Yield trends, variability and stagnation analysis of major crops in France over more than a century
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018) Schauberger, Bernhard; Ben-Ari, Tamara; Makowski, David; Kato, Tomomichi; Kato, Hiromi; Ciais, Philippe
    France is a major crop producer, with a production share of approx. 20% within the European Union. Yet, a discussion has recently started whether French yields are stagnating. While for wheat previous results are unanimously pointing to recent stagnation, there is contradictory evidence for maize and few to no results for other crops. Here we analyse a data set with more than 120,000 yield observations from 1900 to 2016 for ten crops (barley, durum and soft wheat, maize, oats, potatoes, rapeseed, sugar beet, sunflower and wine) in the 96 mainland French départements (NUTS3 administrative division). We dissect the evolution of yield trends over time and space, analyse yield variation and evaluate whether growth of yields has stalled in recent years. Yields have, on average across crops, multiplied four-fold over the course of the 20th century. While absolute yield variability has increased, the variation relative to the mean has halved – mean yields have increased faster than their variability. But growth of yields has stagnated since the 1990’s for winter wheat, barley, oats, durum wheat, sunflower and wine on at least 25% of their areas. Reaching yield potentials is unlikely as a cause for stagnation. Maize, in contrast, shows no evidence for stagnation.
  • Item
    Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement
    ([London] : Nature Publishing Group UK, 2022) Humpenöder, Florian; Popp, Alexander; Schleussner, Carl-Friedrich; Orlov, Anton; Windisch, Michael Gregory; Menke, Inga; Pongratz, Julia; Havermann, Felix; Thiery, Wim; Luo, Fei; v. Jeetze, Patrick; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Lejeune, Quentin
    Transformation pathways for the land sector in line with the Paris Agreement depend on the assumption of globally implemented greenhouse gas (GHG) emission pricing, and in some cases also on inclusive socio-economic development and sustainable land-use practices. In such pathways, the majority of GHG emission reductions in the land system is expected to come from low- and middle-income countries, which currently account for a large share of emissions from agriculture, forestry and other land use (AFOLU). However, in low- and middle-income countries the economic, financial and institutional barriers for such transformative changes are high. Here, we show that if sustainable development in the land sector remained highly unequal and limited to high-income countries only, global AFOLU emissions would remain substantial throughout the 21st century. Our model-based projections highlight that overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. While also a scenario purely based on either global GHG emission pricing or on inclusive socio-economic development would achieve the stringent emissions reductions required, only the latter ensures major co-benefits for other Sustainable Development Goals, especially in low- and middle-income regions.
  • Item
    Future tree survival in European forests depends on understorey tree diversity
    (London : Nature Publishing Group, 2022) Billing, Maik; Thonicke, Kirsten; Sakschewski, Boris; Bloh, Werner von; Walz, Ariane
    Climate change heavily threatens forest ecosystems worldwide and there is urgent need to understand what controls tree survival and forests stability. There is evidence that biodiversity can enhance ecosystem stability (Loreau and de Mazancourt in Ecol Lett 16:106–115, 2013; McCann in Nature 405:228–233, 2000), however it remains largely unclear whether this also holds for climate change and what aspects of biodiversity might be most important. Here we apply machine learning to outputs of a flexible-trait Dynamic Global Vegetation Model to unravel the effects of enhanced functional tree trait diversity and its sub-components on climate-change resistance of temperate forests (http://www.pik-potsdam.de/~billing/video/Forest_Resistance_LPJmLFIT.mp4). We find that functional tree trait diversity enhances forest resistance. We explain this with 1. stronger complementarity effects (~ 25% importance) especially improving the survival of trees in the understorey of up to + 16.8% (± 1.6%) and 2. environmental and competitive filtering of trees better adapted to future climate (40–87% importance). We conclude that forests containing functionally diverse trees better resist and adapt to future conditions. In this context, we especially highlight the role of functionally diverse understorey trees as they provide the fundament for better survival of young trees and filtering of resistant tree individuals in the future.