Search Results

Now showing 1 - 10 of 15
Loading...
Thumbnail Image
Item

Author Correction: Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols

2018, Brüggemann, Martin, Hayeck, Nathalie, George, Christian

[no abstract available]

Loading...
Thumbnail Image
Item

Different pathways of the formation of highly oxidized multifunctional organic compounds (HOMs) from the gas-phase ozonolysis of β-caryophyllene

2016, Richters, Stefanie, Herrmann, Hartmut, Berndt, Torsten

The gas-phase mechanism of the formation of highly oxidized multifunctional organic compounds (HOMs) from the ozonolysis of β-caryophyllene was investigated in a free-jet flow system at atmospheric pressure and a temperature of 295 ± 2 K. Reaction products, mainly highly oxidized RO2 radicals containing up to 14 oxygen atoms, were detected using chemical ionization – atmospheric pressure interface – time-of-flight mass spectrometry with nitrate and acetate ionization. These highly oxidized RO2 radicals react with NO, NO2, HO2 and other RO2 radicals under atmospheric conditions forming the first-generation HOM closed-shell products. Mechanistic information on the formation of the highly oxidized RO2 radicals is based on results obtained with isotopically labelled ozone (18O3) in the ozonolysis reaction and from hydrogen/deuterium (H/D) exchange experiments of acidic H atoms in the products. The experimental findings indicate that HOM formation in this reaction system is considerably influenced by the presence of a double bond in the RO2 radicals primarily formed from the β-caryophyllene ozonolysis. Three different reaction types for HOM formation can be proposed, allowing for an explanation of the detected main products: (i) the simple autoxidation, corresponding to the repetitive reaction sequence of intramolecular H-abstraction of a RO2 radical, RO2  →  QOOH, and subsequent O2 addition, next forming a peroxy radical, QOOH + O2  →  R′O2; (ii) an extended autoxidation mechanism additionally involving the internal reaction of a RO2 radical with a double bond forming most likely an endoperoxide and (iii) an extended autoxidation mechanism including CO2 elimination. The individual reaction steps of the reaction types (ii) and (iii) are uncertain at the moment. From the product analysis it can be followed that the simple autoxidation mechanism accounts only for about one-third of the formed HOMs. Time-dependent measurements showed that the HOM formation proceeds at a timescale of 3 s or less under the concentration regime applied here. The new reaction pathways represent an extension of the mechanistic understanding of HOM formation via autoxidation in the atmosphere, as recently discovered from laboratory investigations on monoterpene ozonolysis.

Loading...
Thumbnail Image
Item

Direct estimation of the global distribution of vertical velocity within cirrus clouds

2017, Barahona, Donifan, Molod, Andrea, Kalesse, Heike

Cirrus clouds determine the radiative balance of the upper troposphere and the transport of water vapor across the tropopause. The representation of vertical wind velocity, W, in atmospheric models constitutes the largest source of uncertainty in the calculation of the cirrus formation rate. Using global atmospheric simulations with a spatial resolution of 7 km we obtain for the first time a direct estimate of the distribution of W at the scale relevant for cirrus formation, validated against long-term observations at two different ground sites. The standard deviation in W, σ w, varies widely over the globe with the highest values resulting from orographic uplift and convection, and the lowest occurring in the Arctic. Globally about 90% of the simulated σ w values are below 0.1 m s-1 and about one in 104 cloud formation events occur in environments with σ w > 0.8 m s-1. Combining our estimate with reanalysis products and an advanced cloud formation scheme results in lower homogeneous ice nucleation frequency than previously reported, and a decreasing average ice crystal concentration with decreasing temperature. These features are in agreement with observations and suggest that the correct parameterization of σ w is critical to simulate realistic cirrus properties.

Loading...
Thumbnail Image
Item

Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere

2018, Ditas, Jeannine, Ma, Nan, Zhang, Yuxuan, Assmann, Denise, Neumaier, Marco, Riede, Hella, Karu, Einar, Williams, Jonathan, Scharffe, Dieter, Wang, Qiaoqiao, Saturno, Jorge, Schwarz, Joshua P., Katich, Joseph M., McMeeking, Gavin R., Zahn, Andreas, Hermann, Markus, Brenninkmeijer, Carl A. M., Andreae, Meinrat O., Pöschl, Ulrich, Su, Hang, Cheng, Yafang

Wildfires inject large amounts of black carbon (BC) particles into the atmosphere, which can reach the lowermost stratosphere (LMS) and cause strong radiative forcing. During a 14-month period of observations on board a passenger aircraft flying between Europe and North America, we found frequent and widespread biomass burning (BB) plumes, influencing 16 of 160 flight hours in the LMS. The average BC mass concentrations in these plumes (∼140 ng·m−3, standard temperature and pressure) were over 20 times higher than the background concentration (∼6 ng·m−3) with more than 100-fold enhanced peak values (up to ∼720 ng·m−3). In the LMS, nearly all BC particles were covered with a thick coating. The average mass equivalent diameter of the BC particle cores was ∼120 nm with a mean coating thickness of ∼150 nm in the BB plume and ∼90 nm with a coating of ∼125 nm in the background. In a BB plume that was encountered twice, we also found a high diameter growth rate of ∼1 nm·h−1 due to the BC particle coatings. The observed high concentrations and thick coatings of BC particles demonstrate that wildfires can induce strong local heating in the LMS and may have a significant influence on the regional radiative forcing of climate.

Loading...
Thumbnail Image
Item

Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols

2018, Brüggemann, Martin, Hayeck, Nathalie, George, Christian

The surface of the oceans acts as a global sink and source for trace gases and aerosol particles. Recent studies suggest that photochemical reactions at this air/water interface produce organic vapors, enhancing particle formation in the atmosphere. However, current model calculations neglect this abiotic source of reactive compounds and account only for biological emissions. Here we show that interfacial photochemistry serves as a major abiotic source of volatile organic compounds (VOCs) on a global scale, capable to compete with emissions from marine biology. Our results indicate global emissions of 46.4-184 Tg C yr-1 of organic vapors from the oceans into the marine atmosphere and a potential contribution to organic aerosol mass of more than 60% over the remote ocean. Moreover, we provide global distributions of VOC formation potentials, which can be used as simple tools for field studies to estimate photochemical VOC emissions depending on location and season.

Loading...
Thumbnail Image
Item

Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis

2011, Liu, Liqun, Breitner, Susanne, Pan, Xiaochuan, Franck, Ulrich, Leitte, Arne Marian, Wiedensohler, Alfred, von Klot, Stephanie, Wichmann, H-Erich, Peters, Annette, Schneider, Alexandra

Background: Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Methods: Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models. Results: We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Conclusions: Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of heat were immediate while the ones of cold became predominant with longer time lags. Increases in air temperature are also associated with an immediate increased risk of respiratory mortality.

Loading...
Thumbnail Image
Item

Novel insights on new particle formation derived from a pan-european observing system

2018, Dall’Osto, M., Beddows, D.C.S., Asmi, A., Poulain, L., Hao, L., Freney, E., Allan, J.D., Canagaratna, M., Crippa, M., Bianchi, F., de Leeuw, G., Eriksson, A., Swietlicki, E., Hansson, H.C., Henzing, J.S., Granier, C., Zemankova, K., Laj, P., Onasch, T., Prevot, A., Putaud, J. P., Sellegri, K., Vidal, M., Virtanen, A., Simo, R., Worsnop, D., O’Dowd, C., Kulmala, M., Harrison, Roy M.

The formation of new atmospheric particles involves an initial step forming stable clusters less than a nanometre in size (<~1 nm), followed by growth into quasi-stable aerosol particles a few nanometres (~1-10 nm) and larger (>~10 nm). Although at times, the same species can be responsible for both processes, it is thought that more generally each step comprises differing chemical contributors. Here, we present a novel analysis of measurements from a unique multi-station ground-based observing system which reveals new insights into continental-scale patterns associated with new particle formation. Statistical cluster analysis of this unique 2-year multi-station dataset comprising size distribution and chemical composition reveals that across Europe, there are different major seasonal trends depending on geographical location, concomitant with diversity in nucleating species while it seems that the growth phase is dominated by organic aerosol formation. The diversity and seasonality of these events requires an advanced observing system to elucidate the key processes and species driving particle formation, along with detecting continental scale changes in aerosol formation into the future.

Loading...
Thumbnail Image
Item

Ultrafine particles in cities

2014, Kumar, Prashant, Morawska, Lidia, Birmili, Wolfram, Paasonen, Pauli, Hu, Min, Kulmala, Markku, Harrison, Roy M., Norford, Leslie, Britter, Rex

Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts.

Loading...
Thumbnail Image
Item

Enhanced tenacity of mycobacterial aerosols from necrotic neutrophils

2020, Pfrommer, E., Dreier, C., Gabriel, G., Dallenga, T., Reimer, R., Schepanski, K., Scherließ, R., Schaible, U.E., Gutsmann, T.

The tuberculosis agent Mycobacterium tuberculosis is primarily transmitted through air, but little is known about the tenacity of mycobacterium-containing aerosols derived from either suspensions or infected neutrophils. Analysis of mycobacterial aerosol particles generated from bacterial suspensions revealed an average aerodynamic diameter and mass density that may allow distant airborne transmission. The volume and mass of mycobacterial aerosol particles increased with elevated relative humidity. To more closely mimic aerosol formation that occurs in active TB patients, aerosols from mycobacterium-infected neutrophils were analysed. Mycobacterium-infected intact neutrophils showed a smaller particle size distribution and lower viability than free mycobacteria. In contrast, mycobacterium-infected necrotic neutrophils, predominant in M. tuberculosis infection, revealed particle sizes and viability rates similar to those found for free mycobacteria, but in addition, larger aggregates of viable mycobacteria were observed. Therefore, mycobacteria are shielded from environmental stresses in multibacillary aggregates generated from necrotic neutrophils, which allows improved tenacity but emphasizes short distance transmission between close contacts.

Loading...
Thumbnail Image
Item

Intercomparison of in-situ aircraft and satellite aerosol measurements in the stratosphere

2019, Sandvik, Oscar S., Friberg, Johan, Martinsson, Bengt G., van Velthoven, Peter F. J., Hermann, Markus, Zahn, Andreas

Aerosol composition and optical scattering from particles in the lowermost stratosphere (LMS) have been studied by comparing in-situ aerosol samples from the IAGOS-CARIBIC passenger aircraft with vertical profiles of aerosol backscattering obtained from the CALIOP lidar aboard the CALIPSO satellite. Concentrations of the dominating fractions of the stratospheric aerosol, being sulphur and carbon, have been obtained from post-flight analysis of IAGOS-CARIBIC aerosol samples. This information together with literature data on black carbon concentrations were used to calculate the aerosol backscattering which subsequently is compared with measurements by CALIOP. Vertical optical profiles were taken in an altitude range of several kilometres from and above the northern hemispheric extratropical tropopause for the years 2006-2014. We find that the two vastly different measurement platforms yield different aerosol backscattering, especially close to the tropopause where the influence from tropospheric aerosol is strong. The best agreement is found when the LMS is affected by volcanism, i.e., at elevated aerosol loadings. At background conditions, best agreement is obtained some distance (>2 km) above the tropopause in winter and spring, i.e., at likewise elevated aerosol loadings from subsiding aerosol-rich stratospheric air. This is to our knowledge the first time the CALIPSO lidar measurements have been compared to in-situ long-term aerosol measurements. © 2019, The Author(s).